
Splitter: Mining Fine-Grained Sequential Patterns in

Semantic Trajectories

Chao Zhang1 Jiawei Han1 Lidan Shou2 Jiajun Lu1 Thomas La Porta3

1Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2College of Computer Science, Zhejiang University, China

3Dept. of Computer Science and Engineering, Penn State University, University Park, PA, USA
1{czhang82, hanj, jlu23}@illinois.edu 2should@zju.edu.cn 3tlp@cse.psu.edu

ABSTRACT
Driven by the advance of positioning technology and the popularity
of location-sharing services, semantic-enriched trajectory data have
become unprecedentedly available. The sequential patterns hidden
in such data, when properly defined and extracted, can greatly ben-
efit tasks like targeted advertising and urban planning. Unfortu-
nately, classic sequential pattern mining algorithms developed for
transactional data cannot effectively mine patterns in semantic tra-
jectories, mainly because the places in the continuous space can-
not be regarded as independent “items”. Instead, similar places
need to be grouped to collaboratively form frequent sequential pat-
terns. That said, it remains a challenging task to mine what we call
fine-grained sequential patterns, which must satisfy spatial com-
pactness, semantic consistency and temporal continuity simultane-
ously. We propose SPLITTER to effectively mine such fine-grained
sequential patterns in two steps. In the first step, it retrieves a
set of spatially coarse patterns, each attached with a set of trajec-
tory snippets that precisely record the pattern’s occurrences in the
database. In the second step, SPLITTER breaks each coarse pattern
into fine-grained ones in a top-down manner, by progressively de-
tecting dense and compact clusters in a higher-dimensional space
spanned by the snippets. SPLITTER uses an effective algorithm
called weighted snippet shift to detect such clusters, and leverages a
divide-and-conquer strategy to speed up the top-down pattern split-
ting process. Our experiments on both real and synthetic data sets
demonstrate the effectiveness and efficiency of SPLITTER.

1. INTRODUCTION
A semantic trajectory [2] is a sequence of timestamped places

wherein each place is described by a spatial location as well as
a semantic label (e.g., office, park). By virtue of improved posi-
tioning accuracy, raw GPS trajectories can be readily linked with
external semantic information (e.g., land use data) for enrichment
[2, 13]. Meanwhile, location-sharing services like Facebook Places
and Foursquare allow people to check-in at different places, each
having a spatial location and a semantic category. The check-in se-
quence of a user is essentially a low-sampling semantic trajectory,
millions of which have been collected by each service provider.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 9
Copyright 2014 VLDB Endowment 2150-8097/14/05.

The unprecedented availability of semantic trajectory data opens
door to understanding object movement along the spatial, temporal
and semantic dimensions simultaneously. Consider the following
questions: (1) Where do people working in Manhattan usually go
to relax after work? (2) Which restaurants do people prefer after
shopping at the Fifth Avenue? (3) Are there any popular sightsee-
ing routes for a one-day trip in Paris? The answers to such ques-
tions can greatly benefit a wide spectrum of real-life tasks, such as
targeted advertising, urban planning and location prediction.

We answer the above questions by exploring fine-grained se-
quential patterns in semantic trajectories. Given a sequence database
D and a threshold �, a sequential pattern is typically defined as a
subsequence that matches at least � sequences in D. Semantic tra-
jectory data, however, introduce new challenges to this definition
and conventional sequential pattern mining algorithms [1, 10, 16].
To illustrate, Figure 1 shows a semantic trajectory database consist-
ing of 5 objects {o1, o2, . . . , o5} and 12 places {p1, p2, . . . , p12}.
Let � = 3. By treating each place pi (1  i  12) as an indepen-
dent “item”, we fail to find any frequent sequences. However, if we
group similar places together, interesting patterns may emerge. For
instance, let G1 = {p1, p2}, G2 = {p7, p8}, G3 = {p9, p10, p11},
the sequence G1 ! G2 ! G3 becomes frequent as it appears in
the trajectories of o1, o2 and o4. Each of G1, G2 and G3 contains
several places that are spatially close and in the same category. The
pattern G1 ! G2 ! G3 thus clearly reveals a common behavior
that people working in area G1 like to exercise at gym in G2 after
work, and then dine at restaurants in G3.

The above running example leads to the following observation:
to find frequent sequential patterns in semantic trajectories, one
should group similar places together. However, while numerous
sequential patterns can be formed by adopting different grouping
strategies, not all of them are interesting. Specifically, a pattern can
reflect movement regularity only when the following conditions are
met: (1) Spatial compactness. The groups in a pattern should not
include places that are too faraway, otherwise the pattern becomes
spatially pointless. In the above example, if G1 = {p1, p2, p4, p5},
G2 = {p3, p7, p8, p12}, G3 = {p6, p9, p10, p11}, we still obtain a
frequent sequence G1 ! G2 ! G3. Nonetheless, the sequence
offers little insight along the spatial dimension as G1, G2 and G3

are spatially scattered. (2) Semantic consistency. The semantics of
the places in each group should be consistent. If we put places from
different categories into the same group, say G2 = {p5, p6, p7},
the semantic meaning of the group becomes obscure. As such, the
result patterns become semantically pointless. (3) Temporal conti-
nuity. The pattern G1 ! G2 ! G3 in Figure 1 is interesting as
both transitions G1 ! G2 and G2 ! G3 occur in no more than 60

minutes. If the transition time between two consecutive groups is
too large, say one year, the pattern becomes temporally pointless.



G2

G1

G3

gym
restaurant

office

p1

p2

p3p4

p5
p6

p7
p8

p9
p10

p11

p12o5 <(p12, 50), (p8, 80), (p11, 120), (p4, 210)>

o4 <(p2, 0), (p1, 120), (p6, 140), (p8, 150), (p11, 180)>

<(p3, 0), (p6, 30)>o3

<(p5, 0), (p7, 30), (p2, 360), (p7, 400), (p10, 420)>o2

o1 <(p3, 0), (p1, 10), (p7, 30), (p9, 40)>
Object Semantic Trajectory

* Places p1 p2... p12  are shown 
on the right.

 * The timestamps are in minute.

* Bold elements match the 
pattern G1 ⟶ G2 ⟶ G3.

Locations and categories of  p1 p2... p12   

Figure 1: Semantic trajectories of o1, o2, . . . , o5 and an example fine-grained sequential pattern G1 ! G2 ! G3 (� = 3).

We call the patterns satisfying the above three conditions fine-
grained sequential patterns, and seek to mine them in an effective
and efficient manner. Fine-grained sequential patterns are impor-
tant for various real-life tasks. Let us consider targeted advertis-
ing as an example. Suppose the restaurant p9 in Figure 1 wants
to advertise to promote sales. Knowing that many people follow
the pattern G1 ! G2 ! G3, the restaurant can simply advertise
around the regions G1 and G2 to effectively attract potential cus-
tomers. As another example, by extracting fine-grained sequential
patterns in a city, we can understand how the populace flow. Such
an understanding can play a key role in improving the design of
transportation systems and road networks.

Despite its importance, mining fine-grained sequential patterns is
a non-trivial task. The major challenge is, how to design an effec-
tive grouping strategy to ensure the result sequences are frequent
and meanwhile fine-grained? A bruteforce solution that enumer-
ates all the possible combinations of places is exponential in na-
ture. Several methods [11, 12, 5] have been proposed for mining
sequential patterns in GPS trajectories, but none of them can effec-
tively address our problem either. To handle spatial continuity, all
these methods partition the whole space into numerous small grids,
and group the places falling inside the same grid (or several neigh-
boring grids). Though simple and efficient, rigid space partitioning
is ineffective for mining fine-grained patterns because: (1) It suf-
fers from the sharp boundary problem. That is, the places close to
the grid boundaries may be assigned into different groups and thus
potential patterns can be lost. (2) It requires a pre-specified granu-
larity for partitioning. For our problem, it is hard to pre-specify a
proper granularity as it may be either too coarse to generate com-
pact groups or too fine to discover frequent patterns. (3) Spatial
proximity should not be the only criterion for grouping places.
For instance, in Figure 1, p2 is closer to p4 than p1, but if we let
G1 = {p2, p4}, the pattern G1 ! G2 ! G3 becomes infrequent.
Hence, the grouping should consider not only spatial proximity, but
also the sequential information in the database.

Contributions. We propose SPLITTER, which employs two steps
to effectively discover fine-grained sequential patterns. In the first
step, SPLITTER groups all the places by category and retrieves a
set of coarse patterns from the database. These coarse patterns dis-
regard the spatial compactness constraint, but guarantee semantic
consistency and temporal continuity. The discovery of such coarse
patterns greatly reduces the search space of fine-grained patterns,
because any fine-grained pattern must have one and only one coarse
pattern as its parent pattern. SPLITTER also attaches each coarse
pattern with a set of trajectory snippets, which are the place se-
quences corresponding to the pattern’s occurrences in the database.

In the second step, SPLITTER treats each coarse pattern indepen-
dently and obtains fine-grained patterns by splitting a coarse pat-
tern in a top-down manner. Specifically, SPLITTER splits a coarse
pattern by clustering its snippets, and then extracts fine-grained pat-
terns from those dense and compact snippet clusters. The clusters

need to be dense to meet the support threshold � and be compact to
ensure the patterns’ spatial compactness. The key benefit of cluster-
ing snippets is that the grouping of places considers not only spatial
proximity but also the sequential information encoded in the snip-
pets. The snippet clustering is underpinned by an effective algo-
rithm called weighted snippet shift, which allows similar snippets
to shift to the same stationary point and form compact clusters. For
the unqualified snippet clusters, i.e., the clusters that cannot form
fine-grained patterns, SPLITTER refines the clustering granularity
to discover additional patterns from them. Such a process contin-
ues until no more fine-grained patterns exist.

Furthermore, to speed up the top-down pattern splitting process,
after each round of clustering, we organize the unqualified snippet
clusters into several disjoint communities that are mutually faraway.
We analytically prove that the further splitting of each community
is autonomous. Better still, small communities that cannot exceed
support threshold are pruned early on to avoid unnecessary split-
ting. Therefore, SPLITTER can generate fine-grained patterns in a
divide-and-conquer manner with excellent efficiency.

Our contributions can be summarized as follows:
(1) We introduce the problem of mining fine-grained sequential

patterns in semantic trajectories. To the best of our knowledge,
we are first in attempting to find sequential patterns that reflect
fine-grained movement regularity along the spatial, temporal and
semantic dimensions simultaneously.

(2) We develop SPLITTER for the proposed problem. SPLITTER
does not rely on fixed space partitioning. Instead, it is a data-driven
approach, which effectively mines fine-grained sequential patterns
with excellent efficiency.

(3) Our extensive experiments on both real and synthetic data
sets show that, SPLITTER is flexible to discover fine-grained pat-
terns in various settings, and it outperforms compared methods sig-
nificantly in terms of both effectiveness and efficiency.

2. PRELIMINARIES

2.1 Problem Description
Let P = {p1, p2, . . . , pm} be a set of places and C be a set

of semantic categories. Each place p 2 P is defined as a tuple
(p.loc, p.cat). Here, p.loc is a two-dimensional vector represent-
ing p’s spatial location, and p.cat 2 C is p’s category. With these
notations, we define semantic trajectory as follows.

DEFINITION 1 (SEMANTIC TRAJECTORY). Given a moving
object o, its semantic trajectory is a sequence of timestamped places
h(p1, t1), (p2, t2), . . . , (pl, tl)i where ti < tj if i < j, and each
element (pi, ti) means o is at place pi 2 P at time ti.

Given a semantic trajectory database D, our goal is to find fre-
quent sequential patterns in D. Due to spatial continuity, similar
places need to be grouped to collaboratively form frequent patterns.
Below, we introduce the concepts of G-sequence and containment.



DEFINITION 2 (G-SEQUENCE). A length-k group sequence
(G-sequence) T has the form T = G1

�t�! G2
�t�! · · · �t�! Gk,

where (1) Gi ✓ P (1  i  k) is a group of places; and (2) �t is
the maximum transition time between any two consecutive groups.

DEFINITION 3 (CONTAINMENT). Given a semantic trajectory
o = h(p1, t1), (p2, t2), . . . , (pl, tl)i and a G-sequence T = G1

�t�!
G2 · · · �t�! Gk (k  l), o contains T (denoted as T v o) if there
exist integers 1  j1 < j2 < · · · < jk  l such that: (1) 81 
i  k, pji 2 Gi; and (2) 81  i  k � 1, 0 < tji+1 � tji  �t.

Note that the matching places pj1pj2 · · · pjk in Definition 3 are
not necessarily consecutive in o. For clarity, we also denote a G-
sequence G1

�t�! G2 · · · �t�! Gk as G1 ! G2 · · · ! Gk when
the context is clear. Now, we proceed to define support and frequent
G-sequence.

DEFINITION 4 (SUPPORT). Given a G-sequence T and a se-
mantic trajectory database D, the support of T in D is the num-
ber of trajectories in D that contain T , i.e., Sup(T ) = |{o|o 2
D ^ T v o}|.

DEFINITION 5 (FREQUENT G-SEQUENCE). Given a thresh-
old �, a G-sequence T is frequent in database D if Sup(T ) � �.

In the rest of the paper, we use frequent G-sequence and sequen-
tial pattern interchangeably. Note that, even for moderately sized
P and D, there can be numerous frequent G-sequences, as exem-
plified below.

EXAMPLE 1. In Figure 1, as G1 ! G2 ! G3 is frequent, the
G-sequences derived by expanding any of G1, G2 or G3 are also
frequent. There are five places p3, p4, p5, p6 and p12 that can be
used for expansion, and each can be added into any of G1, G2 and
G3 or none of them. Hence, we can derive 4

5 � 1 expanded G-
sequences, but none of them are interesting given the presence of
G1 ! G2 ! G3.

Considering the daunting size and high redundancy of the com-
plete set of frequent G-sequences, it is infeasible to report all of
them. Instead, what we want is a set of frequent G-sequences that
are non-overlapping and fine-grained.

DEFINITION 6 (OVERLAPPING RELATIONSHIP). Given two
G-sequences T1 = G1

�t�! G2
�t�! · · · �t�! Gk and T2 =

G0
1

�t�! G0
2

�t�! · · · �t�! G0
l, T1 and T2 are overlapping if (1)

k = l; and (2) 81  i  k,Gi \G0
i 6= �.

DEFINITION 7 (FINE-GRAINED PATTERN). Given a frequent
G-sequence T = G1

�t�! G2
�t�! · · · �t�! Gk, T is fine-grained

if: (1) the places in each Gi have the same semantic category; and
(2) 1

k

Pk
i=1 Var(Gi)  ⇢, where Var(Gi) is the spatial variance of

the places in Gi and ⇢ is a variance threshold.

Note the above three types of constraints for a fine-grained pat-
tern: (1) the maximum transition time �t ensures the temporal
continuity; (2) the semantic constraint ensures the semantic con-
sistency; and (3) the variance threshold ⇢ ensures the spatial com-
pactness. Our goal is to find a set R of fine-grained patterns that
are non-overlapping. Meanwhile, we want R to be as complete as
possible. Since any two patterns in R must be non-overlapping, we
define the coverage of R as follows.

DEFINITION 8 (COVERAGE). Given R, a set of fine-grained
sequential patterns that are non-overlapping, the coverage of R is
Coverage(R) =

P
T2R Sup(T ).

We are now ready to formulate our problem. Given a support
threshold �, a temporal constraint �t, and a spatial variance thresh-
old ⇢, find in database D a set R of non-overlapping fine-grained
patterns such that the coverage of R is as high as possible.

2.2 Overview of Splitter
Even for discrete data, the sequential pattern mining problem has

been shown to be NP-hard [14]. In our problem, the combinatorial
nature of G-sequence makes this task even more challenging. As-
sume the places in P distribute in 2 categories A and B, and each
category has 100 distinct places. To mine length-2 fine-grained pat-
terns, there are 4⇥ (2

100�1)⇥ (2

100�1) candidate G-sequences,
where the term 4 is derived for the four cases A ! A, A ! B,
B ! A and B ! B, and the term 2

100�1 is derived as each group
can contain any number of places from the same category. It is pro-
hibitively expensive to enumerate all the possible grouping strate-
gies and search for the best R by running classic sequential pat-
tern mining algorithms [1, 10, 16] repeatedly. To avoid the costly
enumerate-and-test process, we examine several characteristics of
fine-grained patterns in the sequel, which underpin the design of
SPLITTER.

With a time constraint �t, let T = G1 ! G2 · · · ! Gk and
T 0

= G0
1 ! G0

2 · · · ! G0
k be two G-sequences that satisfy Gi ✓

G0
i for 1  i  k. Obviously, it is ensured Sup(T )  Sup(T 0

),
thus T 0 is frequent so long as T is frequent. We call T 0 a parent
pattern of T . Now, suppose we want to find fine-grained patterns
for o�ce ! gym , that is, visiting gyms after work. We can con-
struct a group G1 to include all the places in category o�ce , and
G2 to include all the places in gym . Then G1 ! G2 will be the
parent of any fine-grained patterns that we want to find. Mean-
while, if G1 ! G2 is infrequent in the database, it is ensured no
fine-grained patterns can exist for o�ce ! gym .

The above inspires a two-step design for SPLITTER. In the first
step, we group the places in P by category. The places in each
group, while being spatially scattered, have the same category. By
viewing each group as an item, we extract all the frequent sequen-
tial patterns from the database. These patterns, which we call coarse
patterns, satisfy semantic and temporal constraints but may not be
spatially compact. In the second step, we consider each coarse pat-
tern independently and explore fine-grained patterns from it.

p5

p6

p1
p2

p3

2
1 1

3

3
p4 office

gym

p7

Figure 2: A coarse pattern o�ce ! gym (� = 3 and �t = 60).
The number beside each line is the number of objects having
the movement (assume all the 10 objects are distinct).

The discovery of coarse patterns significantly reduces the search
space, because it not only filters all the infrequent combinations of
semantic categories, but also allows us to focus on one coarse pat-
tern at each time. But the challenge is, how to explore fine-grained
patterns from a coarse one? Figure 2 shows an example. Assume
� = 3 and �t = 60. With G1 = {p1, p2, p3, p4} and G2 =

{p5, p6, p7}, we obtain a coarse pattern G1 ! G2. To explore



fine-grained patterns from it, an intuitive idea is to split both G1

and G2 into compact subgroups using spatial clustering. By split-
ting each group into 2 subgroups using K-Means, we will obtain
the following subgroups: {p1}, {p2, p3, p4}, {p5} and {p6, p7},
then the pattern {p2, p3, p4}! {p6, p7} appears (support = 6).

Although it seems effective at first glance, splitting each group
independently is actually problematic under careful scrutiny. First,
each subgroup may include useless places, like p2 and p7 in the
pattern {p2, p3, p4} ! {p6, p7}. Worse still, interesting patterns,
like {p1, p2, p4} ! {p5}, may be lost. Second, it assigns each
place to only one subgroup. In practice, however, people may move
from one place, like p4 in Figure 2, to different places. Hence, it
is desirable to allow one place to belong to multiple subgroups,
thereby contributing to different patterns.

To address the above problems, SPLITTER employs a more ef-
fective strategy to explore fine-grained patterns from a coarse one:
it directly clusters the movements that match the coarse pattern,
which we call trajectory snippets.

DEFINITION 9 (TRAJECTORY SNIPPET). Given a length-k G-
sequence T = G1

�t�! G2 · · · �t�! Gk, and a trajectory o =

h(p1, t1), (p2, t2), . . . , (pl, tl)i satisfying T v o, a place sequence
pj1pj2 · · · pjk in o is called a snippet for T if it satisfies: (1) 1 
j1 < j2 < · · · < jk  l; (2) 81  i  k, pji 2 Gi; and (3)
81  i  k � 1, tji+1 � tji  �t.

Informally, in Figure 2, the snippets for the pattern o�ce !
gym are the lines with arrows. SPLITTER directly merges spatially
close lines to form fine-grained patterns. The benefits are two-fold:
(1) the snippets precisely record a coarse pattern’s place-level oc-
currences in the trajectory database, and filters all irrelevant places
(e.g., p7 in Figure 2); and (2) each snippet preserves the move-
ments among places, thus snippet merging considers not only spa-
tial proximity but also sequential information.

EXAMPLE 2. In Figure 2, the snippets p1 ! p5, p2 ! p5,
p4 ! p5 are similar as both their starting and ending places are
spatially close. By merging these snippets, we obtain a fine-grained
pattern {p1, p2, p4} ! {p5}. Similarly, by merging the snippets
p3 ! p6 and p4 ! p6, we obtain the pattern {p3, p4}! {p6}.

Two questions remain to be answered: (1) how to mine the coarse
patterns and their snippets? and (2) how to effectively cluster the
snippets given the fact that we do not know the correct number of
clusters? In the next two sections, we elaborate the two steps of
SPLITTER and answer these two questions.

3. MINING COARSE PATTERN SNIPPETS
Given the place set P , we first group the places in P by category.

Let {G1, G2, . . . , Gd} be the results such that the places in each
Gi have the same category. By viewing each Gi as an item, we can
transform a semantic trajectory to a timestamped item sequence.
Consider the database in Figure 1. With G1 = office, G2 = gym,
and G3 = restaurant, Table 1 shows the transformed database.

Table 1: The transformed semantic trajectory database.
Object Timestamped item sequence
o1 h(G2, 0), (G1, 10), (G2, 30), (G3, 40)i
o2 h(G1, 0), (G2, 30), (G1, 360), (G2, 400), (G3, 420)i
o3 h(G2, 0), (G3, 30)i
o4 h(G1, 0), (G1, 120), (G3, 140), (G2, 150), (G3, 180)i
o5 h(G2, 50), (G2, 80), (G3, 120), (G1, 210)i

After the transformation, it is natural to use some classic sequen-
tial pattern mining algorithms (e.g., PrefixSpan) to extract all the
coarse patterns. However, recall the temporal constraint �t. A se-
quential pattern mining algorithm needs to be tailored to ensure the
transition time between two consecutive groups is no more than �t.
We tailor PrefixSpan as it has proved to be one of the most efficient
sequential pattern mining algorithms. The basic idea of PrefixSpan
is to use short patterns as prefixes to project the database and pro-
gressively grow the short patterns by searching for local frequent
items. For a short pattern �, the �-projected database D� includes
the postfixes from the sequences that contain �. Local frequent
items in D� are then identified and appended to � to form longer
patterns. Such a process is repeated recursively until no more local
frequent items exist. One can refer to [10] for more details. For the
purpose of mining time-constrained sequential patterns, we revise
the notions of postfix and local frequent item as follows.

DEFINITION 10 (POSTFIX). Given a timestamped sequence
↵ = h(G1, t1), (G2, t2), . . . , (Gn, tn)i, and an element Gm (1 
m < n) in ↵, the postfix of ↵ w.r.t. Gm is h(Gm+1, tm+1 �
tm), (Gm+2, tm+2 � tm), . . . , (Gn, tn � tm)i.

DEFINITION 11 (LOCAL FREQUENT ITEM). Given a times-
tamped sequence ↵ = h(G1, t1), (G2, t2), . . . , (Gn, tn)i, an item
G, and a time constraint �t, the sequence ↵ contains G if there
exists an integer i (1  i  n) such that Gi = G and ti  �t. In
a projected database, an item G is frequent if there are at least �
postfixes that contain G.

Given a sequence ↵ and a frequent item G, when creating G-
projected database, the standard PrefixSpan procedure generates
one postfix based on the first occurrence of G in ↵. This strategy,
unfortunately, can miss time-constrained patterns in our problem.

EXAMPLE 3. Let �t = 60 and � = 3. In the database shown
in Table 1, item G1 is frequent. The G1-projected database gener-
ated by PrefixSpan is:

(1) o1/G1 = h(G2, 20), (G3, 30)i
(2) o2/G1 = h(G2, 30), (G1, 360), (G2, 400), (G3, 420)i
(3) o4/G1 = h(G1, 120), (G3, 140), (G2, 150), (G3, 180)i

The elements satisfying t  60 are (G2, 20), (G3, 30) and (G2, 30).
No local item is frequent, hence G1 cannot be grown any more.

To overcome the above problem, we introduce a simple principle
called full projection. Specifically, for a sequence ↵ and a frequent
item G, we generate a postfix for every occurrence of G in ↵.

EXAMPLE 4. With full projection, G1-projected database is:
(1) o1/G1 = h(G2, 20), (G3, 30)i
(2) o2/G1 = h(G2, 30), (G1, 360), (G2, 400), (G3, 420)i
(3) o2/G1 = h(G2, 40), (G3, 60)i
(4) o4/G1 = h(G1, 120), (G3, 140), (G2, 150), (G3, 180)i
(5) o4/G1 = h(G3, 20), (G2, 30), (G3, 60)i

Items G2 and G3 are frequent and meanwhile satisfy the temporal
constraint, thus longer patterns G1

60�! G2 and G1
60�! G3 are

found in the projected database.

With full projection, the projected database includes all postfixes
to avoid missing patterns under the time constraint. That said, mul-
tiple postfixes from the same trajectory can appear simultaneously.
Hence, we should attach each postfix with its trajectory id to pre-
vent one trajectory from being counted repeatedly.



Another intention of full projection is to collect all the distinct
snippets for a coarse pattern. Continuing the above example, o2
contains two different snippets (p5p7 and p2p7) for the coarse pat-
tern G1 ! G2, these two snippets correspond to the two projec-
tions of o2/G1. In order to extract snippets along with a coarse
pattern, we maintain an additional snippet field in each projection
and grow the snippet along with the pattern, as exemplified below.

EXAMPLE 5. In Table 1, G1 is frequent and G1 v o1. In
the projection o1/G1, we additionally store the snippet p1, which
records G1’s occurrence in o1. Note that, by preserving the orig-
inal place id information in the transformed database, p1 is at-
tached with the element (G1, 10) and thus readily available. As
G1 grows to G1 ! G2, the snippet field p1 is also extended to
p1p7. When reporting the pattern G1 ! G2, the snippets in its
projected database are aggregated and reported. Using the pseudo
projection technique [10], maintaining the snippet field incurs little
overhead.

Algorithm 1 sketches our algorithm for mining coarse patterns
and their snippets. As shown, given the transformed database D
and threshold �, we first extract all the single frequent items in D
(note that we do not need to check the constraint �t when search-
ing for single frequent items in D). Then for each frequent item i,
we build the i-projected database using full projection. Once the
projected database is built, we call PrefixSpan to recursively output
frequent patterns. The PrefixSpan procedure is similar to the stan-
dard version in [10], except that the time constraint �t is checked
when searching for local frequent items. Moreover, full projection
is adopted, and each projected postfix maintains a snippet field that
is grown along with the pattern.

The output of Algorithm 1 is a set of coarse patterns. Each coarse
pattern T is attached with a snippet set S = {(s, V, w)|T v s}.
In the triple (s, Vs, ws), s is a snippet for T , Vs is the set of ob-
jects containing s (we call them visitors of s), and w = |V |. For
example, in Figure 1, p1 ! p7 is a snippet for the coarse pattern
o�ce ! gym , and o1 is the only object containing this snippet, so
the respective triple is (p1 ! p7, {o1}, 1).

Algorithm 1: Mining coarse patterns and snippets.
Input: support threshold �, temporal constraint �t,

transformed semantic trajectory database D
1 Procedure InitialProjection(D, �, �t)
2 L frequent items in D;
3 foreach item i in L do
4 S  �;
5 foreach trajectory o in D do
6 R postfixes for all occurrences of i in o;
7 S  S [R;
8 Output i and its snippets;
9 PrefixSpan(i, 1, S, �t);

10 Function PrefixSpan(↵, l, S|↵, �t)
11 L frequent items in S|↵ meeting time constraint �t;
12 foreach item i in L do
13 ↵0  append i to ↵;
14 Build S|↵0 using full projection and grow the snippet

field in each projection;
15 Output ↵0 and its snippets;
16 PrefixSpan(↵0, l + 1, S|↵0 , �t);

4. FINDING FINE-GRAINED PATTERNS
For each coarse pattern T , we now have a set S of its snippets

that are spatially scattered. Next task is to explore fine-grained pat-
tens for T by merging close snippets in S. To this end, we trans-
form each snippet into a weighted point in a higher-dimensional
Euclidean space. Given a length-k snippet s = p1p2 · · · pk, we
transform it into a 2k-dimensional point x by assembling the coor-
dinates of pi (1  i  k). Meanwhile, we attach the weight of s,
namely the number of visitors, to x. The key observation is that, if
a fine-grained pattern exists, its snippets will form a dense and com-
pact cluster in the transformed space. The cluster needs to be dense
in order to meet support threshold �, and be compact to meet the
variance threshold ⇢. Hence, the problem is reduced to detecting
such dense and compact clusters in the transformed space.

One may suggest some classic clustering algorithms such as K-
means, GMM and DBSCAN to detect clusters. However, the effec-
tiveness of these algorithms relies on the prior knowledge about the
underlying data distribution and/or correctly guessing the number
of clusters. For a coarse pattern T , snippet distribution in the trans-
formed space can be really complex, rendering these algorithms
intractable. To overcome this challenge, we propose an adaption of
the mean shift algorithm [3], called weighted snippet shift.

Mean shift is a non-parametric method widely used in the com-
puter vision community. It has several nice properties for our task.
First, it does not assume any prior knowledge about the number
of clusters or data distribution. Thus it can effectively discover ar-
bitrarily shaped clusters in a complex data space. Second, it has
only one parameter, namely the bandwidth, which has a physical
meaning as the scale of observation. The tuning of bandwidth h
can effectively control the granularity of observation. This prop-
erty makes mean shift well suited for finding fine-grained patterns
in a top-down manner: Starting with a large h, if some snippet
clusters are dense and compact, we grab them out as fine-grained
patterns. For the remaining snippets, we reduce h to observe at a
finer granularity, such a process continues until no more clusters
can be dense enough to exceed �.

In the following, we first describe the weighted snippet shift al-
gorithm. Then we introduce the details of the top-down pattern
discovery process. Finally, we discuss the algorithm efficiency.

4.1 Pattern Splitting via Weighted Snippet Shift
We first introduce standard mean shift, then describe how we

adapt it to cluster snippets and split a coarse pattern.
Standard Mean Shift. Mean shift is essentially a kernel-based
mode (i.e., local maxima of density) seeking method. While var-
ious kernel functions can be used for mean shift, we choose the
Epanechnikov kernel due to its simplicity and optimality in terms
of bias-variance tradeoff. The Epanechnikov kernel is defined as

K(x) =

⇢
c(1� kxk2) ifkxk < 1

0 otherwise,

here c is a constant to ensure
Z

K(x) dx = 1.

Informally, for a d-dimensional point, mean shift finds its mode
by iteratively shifting a radius-h window towards a local density
maxima. The window is called the kernel window and the radius
is called the bandwidth. In each iteration, let y(k) be the center of
current window, and N = {x1,x2, . . . ,xm} be the m data points
inside the window, then the kernel window is shifted towards the
maximum increase of density for y(k). Using the Epanechnikov
kernel, the mean shift vector for y(k) is

m(y(k)
) =

1

m

mX

i=1

xi � y(k). (1)



Then y(k) is shifted by m(y(k)
), resulting in a new kernel win-

dow located at the mean of {x1,x2, . . . ,xm}, namely

y(k+1)
= y(k)

+m(y(k)
) =

1

m

mX

i=1

xi. (2)

Figure 3 illustrates the mean shift operation. Given a point x,
mean shift starts with an initial window center y(0)

= x, and itera-
tively shifts the window according to Equation 2. The sequence
{y(k)} will converge to the mode x belongs to. Then the data
points that converge to the same mode are grouped as one cluster.

x1

x2

x3

kernel window bandwidth

mean shift vector

Figure 3: Mean shift with the Epanechnikov kernel.

Weighted Snippet Shift. We have transformed the coarse pattern
snippets into weighted points and the weight denotes the number
of visitors. Intuitively, a large-weight snippet is a popular place
sequence, and should have a higher chance to attract the mode to-
wards it. Below, we adapt the standard mean shift procedure to
incorporate snippet weight and prove its convergence. Let X =

{(x1, w1), (x2, w2), . . . , (xn, wn)} be those weighted points in
the d-dimensional space. Using the Epanechnikov kernel, the den-
sity estimator at any location y is

ˆf(y) =
1

hdw

nX

i=1

wiK(

y � xi

h
) =

c

hd+2w

X

xi2N

wi(h
2�ky�xik2).

where w =

Pn
i=1 wi, and N ✓ X are points inside the radius-h

window centered at y (i.e., the distance to y is smaller than h). The
density gradient at y is then given by

r ˆf(y) =
2c

hd+2w

X

xi2N

wi(xi � y)

=

2c

hd+2w

0

@
X

xi2N

wi

1

A
 P

xi2N wixiP
xi2N wi

� y

!
.

To perform gradient ascent, the weighted shift vector becomes

m(y) =

P
xi2N wixiP
xi2N wi

� y, (3)

which is simply the difference between the weighted mean of points
in N , and y, the current window center. One can observe that the
shifting vector is proportional to the density gradientr ˆf(y), it thus
moves y towards the densest location in the current window. The
snippet weight is playing an important role in shifting: if a snippet
has a large number of visitors, then it is more likely to attract the
new center towards itself.

We sketch the weighted snippet shift procedure in Algorithm 2.
As shown, starting from the initial point x, the procedure first uses
y(0)

= x as the window center and retrieves points Nk inside the
radius-h window. It then moves the window center to the weighted
mean of Nk. The procedure is repeated until the window center
becomes (approximately) stationary.

Algorithm 2: Weighted snippet shift.
Input: a set of S of weighted snippets, bandwidth h

1 foreach x 2 S do
2 k  0, y(0)  x;
3 while True do
4 Nk  {x}mi=1 s.t. 8i, ky(k) � xik  h;
5 y(k+1)  (

Pm
i=1 wixi)/(

Pm
i=1 wi);

6 if ky(k+1) � y(k)k  ✏ then
7 return (x,y(k+1)

);
8 k  k + 1;

THEOREM 1. Starting from any snippet x 2 S, the weighted
snippet shift procedure will converge.

PROOF. See Appendix.

Pattern Splitting. For a coarse pattern T and its snippet set S, Al-
gorithm 2 shifts each snippet in S to a stationary point (mode). The
snippets shifted to the same mode are then grouped together. In this
way, S is split into a number of clusters �S = {S1,S2, . . . ,Sn}.
A cluster Si 2 �S forms a fine-grained pattern if it satisfies the
following two conditions: (1) Si is frequent, namely | [s2Si | �
�; and (2) the G-sequence derived from Si has a spatial variance
smaller than ⇢ (Definition 7).

4.2 Top-Down Pattern Discovery
To split a coarse pattern, it is hard to pre-specify an optimal band-

width h: if h is small, we may obtain many small snippet clusters
that cannot exceed the support threshold �. On the other hand, if h
is too large, we may obtain some large clusters that cannot satisfy
the variance constraint ⇢.

To avoid guessing a fixed bandwidth beforehand, we develop a
top-down pattern discovery process: We start snippet clustering
with an initial bandwidth h that is large. From the result snippet
clusters, we grab out the ones forming fine-grained patterns. Then,
we dampen h and zoom into the remaining snippets to find addi-
tional patterns. This process continues until no more patterns exist,
and fine-grained patterns are reported on-the-fly.

However, after each round of clustering, the set of remaining
snippets could still be large, it is costly to repeat Algorithm 2 on a
large set of snippets. To speed up the top-down discovery process,
we design a divide-and-conquer strategy. The key idea is to orga-
nize the remaining clusters into several communities that are mu-
tually faraway. We prove that the further clustering with a smaller
h can be carried out in each community independently. Better still,
small communities that cannot exceed the support threshold are
pruned early on. Let �S = {S1,S2, . . . ,Sn} be a set of snippet
clusters. Below, we introduce the notion of �-community.

DEFINITION 12 (�-ADJACENCY). Given two clusters Si and
Sj (i 6= j), they are �-adjacent if 9x 2 Si, 9y 2 Sj , kx�yk  �.

DEFINITION 13 (�-ADJACENT GRAPH). Given a distance �,
the �-adjacent graph G� constructed from �S is as follows: each
node of G� is a cluster Si 2 �S , and there exists an edge between
two nodes if the corresponding clusters are �-adjacent.

Based on Definition 13, we define a �-community as a connected
component in the �-adjacent graph. Figure 4 shows a concrete ex-
ample. Given 6 snippet clusters S1,S2, . . . ,S6, their �-adjacent
graph is shown in Figure 4(b). There are 3 connected components
in the graph, corresponding to the �-communities C1, C2 and C3.



S1S2

S3 S4 S5

S6

(a) Snippet clusters.

2
1

3
4 5

6

C1

C2

C3

(b) �-adjacent graph.

Figure 4: Illustration of �-community.

Let ⌦C = {C1, C2, . . . , Ct} be the �-communities obtained
from �S , the distance between any two �-communities is at least
�. Recall Algorithm 2, which iteratively shifts a radius-h window
until convergence. Below, we prove that if h  �/

p
2, points from

different �-communities will never converge to the same mode.

LEMMA 1. When running Algorithm 2 from any point x, let
y(k) be the center of the window after k iterations. With h 
�/
p
2, if the window centered at y(k) includes only points from

Ci, then the window at y(k+1) also includes only points from Ci.

PROOF. See Appendix.

LEMMA 2. Given a point x 2 Ci, suppose x converges to y
x

by running Algorithm 2 with bandwidth h. If h  �/
p
2, the win-

dow centered at y
x

includes only points from Ci.

PROOF. By the definition of �-community, the radius-h win-
dow centered y(0)

= x includes only points from Ci because
h  �/

p
2 < �. By Lemma 1, if the window at y(k) includes only

points from Ci, so does the window at y(k+1). As y
x

is derived
from the sequence {y(k)}, the lemma holds immediately.

Given ⌦C = {C1, C2, . . . , Ct}, Lemma 2 amounts to saying
that an arbitrary point x in any Ci converges to a kernel window
that only contains points in Ci. We proceed to show when � �p
2h, this condition suffices to guarantee points from two different

�-communities will not converge to the same mode.

THEOREM 2. Given two �-communities Ci and Cj (i 6= j),
and two points x 2 Ci and x0 2 Cj . With h  �/

p
2, suppose x

converges to y and x0 converges to y0, it is ensured y 6= y0.

PROOF. See Appendix.

Theorem 2 implies a nice property for �-community. Suppose
we run Algorithm 2 on ⌦C = {C1, C2, . . . , Ct} with a bandwidth
h  �/

p
2, each community Ci is totally independent of others.

Hence, the task of clustering ⌦C can be broken into t smaller tasks.
Moreover, small communities that cannot exceed � can be safely
pruned, as suggested in Theorem 3.

THEOREM 3. For Ci 2 ⌦C , let Vs be the set of visitors for a
snippet s 2 Ci. Given the support threshold �, if |[s2Ci Vs| < �,
then Ci cannot generate any fine-grained patterns.

PROOF. By Theorem 2, any snippet cluster S generated from
Ci satisfies | [s2S Vs|  | [s2Ci Vs| < �. The correctness of
Theorem 3 then becomes immediate.

Algorithm 3 presents the top-down pattern discovery process.
Let S be the snippet set of a coarse pattern, to discover fine-grained

patterns from S, we need to specify two parameters: an initial
bandwidth h0 and a dampening factor ⌧ (0 < ⌧ < 1). The top-
down discovery process is recursive. Given a snippet set S and a
bandwidth h, it first clusters S into �S using weighted snippet shift.
If fine-grained patterns exist among �S (by aggregating the snip-
pets in the cluster and checking support and variance), we report
them and remove them from �S . For the remaining clusters, we or-
ganize them into several �-communities with � =

p
2⌧h. � is set

to
p
2⌧h because it ensures each community is independent when

performing snippet clustering with bandwidth ⌧h. By Theorem 3,
those small communities that cannot generate frequent patterns are
pruned, then the remaining communities are further clustered with
bandwidth ⌧h to find additional fine-grained patterns.

Algorithm 3: Top-down pattern discovery.
Input: snippet set S, support threshold �, variance threshold

⇢, bandwidth h, dampening factor ⌧
1 Procedure SplitPattern(S, �, ⇢, h, ⌧ )
2 �S  cluster S via weighted snippet shift with h;
3 foreach Si 2 �S do
4 if Sup(Si) � � and V ar(Si)  ⇢ then
5 Report Si as a fine-grained pattern;
6 Remove Si from �S ;

7 �  
p
2⌧h ;

8 ⌦C  �-communities constructed from �S ;
9 foreach Ci 2 C do

10 if Sup(Ci) � � then
11 SplitPattern(Ci, �, ⇢, ⌧h, ⌧ );

The �-communities can be efficiently constructed as a byproduct
of weighted snippet shift. The key to constructing �-communities
is to find the �-neighbors for each snippet s 2 S. Recall the ini-
tial step of Algorithm 2, which launches a range query to find h-
neighbors for each snippet. We can simply modify the initial step
by launching a range query with radius = max{h,

p
2⌧h}. The

query results can generate two lists: one is the h-neighbors to al-
low Algorithm 2 to proceed, and the other is the �-neighbors as a
byproduct to enable �-community construction.

4.3 Discussion
In the top-down pattern discovery process, weighted snippet shift

(Algorithm 2) is called multiple times. Given n d-dimensional
points, the complexity of Algorithm 2 is O(kdn2

), where k is the
average number of iterations before convergence. The running time
is mainly affected by n, but n will not be large in our problem. The
reasons are two-fold: (1) The snippet set S includes distinct snip-
pets extracted for a coarse pattern. The cardinality of S is expected
to be much smaller than the database size. (2) As the top-down
process proceeds, a snippet set is recursively broken into smaller
and smaller communities.

5. EXPERIMENTS
In this section, we evaluate the empirical performance of SPLIT-

TER. All algorithms were implemented in JAVA and the experi-
ments were conducted on a computer with Intel Core i7 2.4Ghz
CPU and 8GB memory.

5.1 Experimental Setup
Data Sets. Our experiments are based on both real and synthetic
semantic trajectory data sets. The real data set, referred to as 4SQ,



is collected from Foursquare. As aforementioned, the check-in se-
quence of each Foursquare user is essentially a low-sampling se-
mantic trajectory. Our 4SQ data set consists of the semantic trajec-
tories of 14,909 users living in New York. There are totally 48,564
distinct places in the data set, distributed in a 0.5� ⇥ 0.5� space
and 15 categories. The average length of each trajectory, i.e., num-
ber of check-ins, is 20. For most trajectories in 4SQ, some parts
in a trajectory are dense while the rest are sparse. Note that this
fact does not affect the applicability of the proposed problem. With
the time constraint �t, an effective method should automatically
detect fine-grained patterns from the dense parts.

We generate two synthetic data sets using Brinkhoff’s network-
based generator of moving objects1, with San Francisco’s map as
the underlying network. The first synthetic data set, called S1K,
consists of 103 trajectories and 3.0 ⇥ 10

4 distinct places. We first
generate 10

3 trajectories for 100 timestamps and randomly choose
one category for each place from 20 pre-defined categories. Then
we define 50 length-2 fine-grained patterns and 10 length-3 ones.
For each pattern, we insert a supporting snippet to every trajectory
with probability 0.05. The second synthetic data set S10K consists
of 104 trajectories, recorded for 100 timestamps. There are about
3.2⇥ 10

5 distinct places in S10K. Similarly, 104 random trajecto-
ries are first generated and then mixed with pre-defined patterns.
Compared Methods. To the best of our knowledge, no existing
methods can be directly used to mine fine-grained sequential pat-
terns in semantic trajectories. However, some existing techniques
can be extended for our problem, we describe two compared meth-
ods as follows.

The first method, referred to as GRID, is adapted from the algo-
rithm for mining sequential patterns in GPS trajectories [5]. The
key is to identify a set of disjoint Region-of-Interest (RoI) in the
space. Each RoI is a dense rectangle-shaped region. To find such
RoIs, the space is first partitioned into numerous small grids, then
each dense grid is gradually merged with its neighboring grids un-
til the density of the merged region is below a threshold �. Once
the RoIs are identified, the places inside the same RoI are grouped
together. To ensure semantic consistency, GRID identifies the RoIs
for each category independently. Based on such RoIs, GRID trans-
forms the database (i.e., mapping place ids to RoI ids) and runs
Algorithm 1 to select out fine-grained patterns. Since � greatly af-
fects mining effectiveness, GRID repeats the above process t times
with different �, and reports the best performance.

The second method, referred to as HC, integrates Algorithm 1
with hierarchical spatial clustering. First, HC groups the places in
P by category, and uses K-Means to cluster the places in each cat-
egory into K groups based on spatial proximity. With these groups,
HC transforms the database by mapping place ids to group ids,
and runs Algorithm 1. Among the output patterns, HC focuses on
the coarse ones that do not satisfy the spatial constraint ⇢. Specif-
ically, HC breaks each group in a coarse pattern into K smaller
subgroups. With the new grouping scheme, HC runs Algorithm 1
again. Such a process continues until all the output patterns be-
come fine-grained. To be efficient, after each call of Algorithm 1,
HC prunes the groups that do not appear in any output patterns, and
thus the trajectory database keeps shrinking.

5.2 Illustrating Cases
We first demonstrate how SPLITTER works by mining length-1

patterns on 4SQ. Although length-1 patterns actually do not contain
sequential information, they are easier to visualize as each length-
1 snippet is simply a place. Figure 5 shows the process of min-

1http://iapg.jade-hs.de/personen/brinkhoff/generator/

ing length-1 patterns in category transportation, with � = 150

and ⇢ = 2 · 10�4. SPLITTER first groups all the transportation
places and finds a coarse pattern (Figure 5(a)). By splitting the
pattern with an initial bandwidth h0 = 0.02, C1, C2 and C3 are re-
ported as fine-grained patterns (Figure 5(b)). Interestingly, C1, C2

and C3 correspond to three airport areas in New York. R1, which
corresponds to transportation places in Manhattan, is a large clus-
ter meeting the support threshold � but not the variance threshold
⇢. After grabbing out C1, C2, C3 and pruning small communi-
ties, SPLITTER proceeds with bandwidth h = 0.016 (⌧ = 0.8),
and finds two additional patterns C4 and C5, which are the trans-
portation places around the Wall Street and Midtown Manhattan,
respectively. Finally, SPLITTER finds the 8 fine-grained patterns
C1, C2, . . . , C8 shown in Figure 5(d).

With � = 150 and �t = 120 minutes, we find 73 length-2
coarse patterns and 6 length-3 ones on 4SQ. Table 2 shows the
coarse patterns with the largest support. We can see these patterns
are quite sensible. For example, “Shop! Food! Shop” implies
many people first went shopping, then after having lunch/dinner,
they returned to continue. “Professional! Food!Nightlife Spot”
implies a common behavior that people had dinner after work, and
then went to nightlife spots to relax. We now refine the most fre-
quent length-2 pattern “Shop! Food” with h0 = 0.02, ⌧ = 0.8
and ⇢ = 2 · 10�4. SPLITTER discovers 6 fine-grained sequential
patterns from this coarse pattern. Figure 6 depicts 3 representa-
tive ones. The patterns P1 = S1 ! R1 and P2 = S2 ! R2

imply many people just ate at nearby restaurants after shopping,
but P3 = S3 ! R3 shows there are also people willing to eat at
faraway restaurants after shopping (S3 is a group of shops in Man-
hattan, and R3 is a group of restaurants near the Prospect Park).

Table 2: Top five length-2 and length-3 coarse patterns.
Pattern Sup

length=2

Shop ! Food 1819
Food ! Shop 1464

Professional ! Nightlife Spot 1121
Outdoor ! Food 947

Residence ! College & University 647

length=3

Shop ! Food ! Shop 262
Professional ! Food ! Nightlife Spot 240

Entertainment ! Food ! Shop 178
Transportation ! Shop ! Shop 174
Residence ! Outdoor ! Food 163

S1

S2
S3

R1

R2

R3

P1: Sup = 1244

P2: Sup = 197

P3: Sup = 265

Shops Restaurants

Figure 6: Example length-2 fine-grained patterns.

5.3 Effectiveness Study
In this subsection, we compare the effectiveness of SPLITTER,

GRID and HC in terms of coverage and number of patterns. We
only mine patterns with length no less than 2. On 4SQ, we set the
default parameters of fine-grained pattern as � = 150, ⇢ = 2·10�4

and �t = 120 minutes. For SPLITTER, we set its default param-
eters as h0 = 0.02 and ⌧ = 0.8 because such a setting achieves





(a) Initial coarse pattern.

C1

C2

C3

R1

(b) Split with h = 0.02.

C4 C5

R2

C1

C2

C3

(c) Split with h = 0.016.

C6

C7
C8

C4 C5
C1

C2

C3

(d) Fine-grained patterns.

Figure 5: Illustration of mining fine-grained patterns in category transportation on 4SQ. Each dot represents a transportation place.

a good tradeoff between effectiveness and efficiency. We set the
repeating number t = 10 for GRID, and K = 2 for HC.
Varying �. In the first set of experiments, we examine the effect
of � on the performance of the three methods. As shown in Figure
7(a) and 7(b), the coverage and number of patterns of all the three
methods decrease with �. This is because when � is large, more
places need to be included in a group, which in turn can violate
the spatial and temporal constraints. Comparing the performance
of the three methods, SPLITTER consistently outperforms the other
two in terms of both coverage and number of patterns. We have
also examined the lengths of result patterns, and found that GRID
and HC can only find length-2 patterns in all settings. In contrast,
SPLITTER can discover length-3 patterns if � is not too large. When
� = 50, 100, 150, the number of length-3 patterns discovered by
SPLITTER is 8, 4, and 1, respectively.
Varying �t. Figure 7(c) and 7(d) show the performance of the
three methods as �t varies. The coverage and number of patterns
of these methods increase roughly linearly with �t. This is intu-
itive as a larger �t imposes a weaker constraint on the transition
time between consecutive groups, thus G-sequences tend to gain
more support in the database. We also found that when �t is small,
the groups in each pattern are spatially close, but as �t becomes
larger, patterns containing faraway groups gradually appear. The
reason behind is that, when �t is small, long-range movements
in trajectories are eliminated. Under different �t, SPLITTER still
significantly outperforms the compared methods.
Varying ⇢. Figure 7(e) and 7(f) show the performance of the three
methods as ⇢ varies from 2 · 10�4 to 10

�3 (when ⇢ > 10

�3, the
result patterns become not compact already). Again, SPLITTER is
much more effective than GRID and HC under different ⇢. An-
other interesting finding is that, there are fewer fine-grained pat-
terns than coarse ones for all methods, especially when ⇢ is small.
For example, when ⇢ = 2 · 10�4, there are 79 coarse patterns, but
even SPLITTER only reports 34 fine-grained ones. We checked the
coarse patterns that have been eliminated, and found that the move-
ments in most of them are quite scattered. They do not contain any
sub-patterns that are frequent and compact, thus eliminated by the
spatial constraint ⇢.
Effects of h0 and ⌧ . Finally, we examine the effects of h0 and ⌧
on the performance of SPLITTER. Figure 7(g) and 7(h) shows the
coverage of SPLITTER as h0 and ⌧ increase (we omit their effects
on the number of patterns because the trend is similar). As h0 in-
creases, the performance of SPLITTER first increases dramatically
and then becomes steady. This phenomenon is expected. During
the top-down splitting process, if h0 is too small, we will gen-
erate many small snippet clusters even in the first round of split-
ting. Such clusters do not meet the support threshold �, nor will
clusters further generated with dampened h. However, so long as

h0 is large enough (0.002), this problem does not exist any more,
and the performance of SPLITTER becomes insensitive to h0. Fig-
ure 7(h) shows that the performance of SPLITTER increases with
⌧ . Intuitively, if ⌧ is too small, many appropriate bandwidths may
be skipped during the top-down discovery of fine-grained patterns.
Hence, the parameter ⌧ should not be set too small in practice.
Summary of effectiveness study. The above observations demon-
strate the effectiveness of SPLITTER. It always outperforms GRID
and HC significantly under different settings. The experimental re-
sults and findings are similar on the two synthetic data sets, we omit
them to save space.

5.4 Efficiency Study
In this subsection, we compare the efficiency of SPLITTER, GRID

and HC. Unless otherwise stated, all parameters are set to their de-
fault values as in Section 5.3.
Efficiency comparison on 4SQ. Figure 8 reports the running time
of the three methods on 4SQ. Since SPLITTER is a two-step method,
we break its total running time into two parts: S-Coarse is the run-
ning time for mining coarse patterns, and S-Refine is the running
time for discovering fine-grained patterns from the coarse ones. We
compare the running time of SPLITTER, GRID and HC when � and
�t vary. The effect of ⇢ is omitted because the running time of all
methods changes slightly when ⇢ varies from 2 · 10�4 to 10

�3.
As shown in Figure 8(a), the running time of all methods de-

creases with �. GRID is much slower than HC and SPLITTER be-
cause it needs to run Algorithm 1 with 10 different density thresh-
old �. If we run GRID with only one fixed �, the effectiveness of
GRID drops dramatically. HC also needs to run Algorithm 1 multi-
ple times, but it is quite efficient as it can prune the clusters that do
not appear in any frequent patterns. Comparing the performance of
SPLITTER and HC, SPLITTER consistently outperforms HC, but
the difference becomes less obvious when � is large. This is be-
cause when � is large, only few clusters derived by HC can form
frequent patterns while most clusters are pruned, making HC very
ineffective (see Figure 7(b)). Figure 8(b) shows that the running
time of all methods increases with �t. SPLITTER is faster than HC
when �t is small. However, its time cost increases more quickly
with �t, and finally becomes larger than HC when �t � 150. The
reason is that when �t is large, much more coarse patterns are dis-
covered, which makes the pattern splitting step more costly. Note
that the efficiency of HC comes with the price of being ineffective
when �t is large (see Figure 7(d)).
Effects of h0 and ⌧ . Figure 9 shows the effects of parameters
h0 and ⌧ on the performance of SPLITTER. As shown, when h0

and ⌧ increase, the running time of SPLITTER’s first step does not
change, while the running time of second step keeps increasing.
The increase with h0 is quite rapid, as a large h makes SPLITTER
execute snippet clustering more times, and makes it harder to orga-



(a) Coverage w.r.t. �. (b) Pattern number w.r.t. �. (c) Coverage w.r.t. �t. (d) Pattern number w.r.t. �t.

(e) Coverage w.r.t. ⇢. (f) Pattern number w.r.t. ⇢. (g) Coverage w.r.t. h0. (h) Coverage w.r.t. ⌧ .

Figure 7: Effectiveness comparison of Splitter, Grid, and HC on 4SQ.

nize snippets into �-communities. However, as mentioned earlier, a
very large h0 brings no extra benefit to the effectiveness of SPLIT-
TER. Hence, h0 does not need to be too large in practice.
Effect of the speedup strategy. In this set of experiments, we
study the effectiveness of the divide-and-conquer strategy for SPLIT-
TER. For comparison, we implemented a naı̈ve version of top-down
splitting without the speedup strategy, referred to as Naı̈ve-Refine.
As shown in Figure 10, under various settings of � and �t, S-
Refine always outperforms Naı̈ve-Refine significantly, which vali-
dates the effectiveness of the divide-and-conquer strategy.
Efficiency on synthetic data sets. Finally, we report the efficiency
study on our synthetic data sets. Figure 11 shows that SPLITTER
outperforms the compared methods on both data sets. The perfor-
mance gap is more obvious on S1K, mainly because HC and GRID
are ineffective on S10K and terminate at an early stage. For ex-
ample, when � = 300, SPLITTER finds 6 length-3 fine-grained
patterns on S10K, while HC and GRID find none.
Summary of efficiency study. The above results demonstrate the
efficiency of SPLITTER. Under a few parameter settings (when �
and �t are large), HC may take less time than SPLITTER, but that
comes with the price of being much less effective.

6. RELATED WORK
Sequential pattern mining in transactional data has been exten-

sively studied. Agrawal and Srikant [1] first introduce this problem
and employ Apriori to discover patterns. Other efficient solutions
include projection-based method PrefixSpan [10] and vertical for-
matting method SPADE [16]. However, none of these algorithms
can handle trajectory data due to spatial continuity.

Several pioneering studies [11, 12] have investigated mining se-
quential patterns in spatio-temporal databases. To handle spatial
continuity, they adopt the space partitioning strategy, which dis-
cretizes the whole space into many small grids based on a pre-
specified granularity. Though simple and efficient, rigid space par-
titioning is not suitable for mining fine-grained sequential patterns.
It suffers from the sharp boundary problem, namely the locations
close to grid boundaries may be assigned to different grids and thus
potential fine-grained patterns may be lost.

Giannotti et al. [5] define the T-pattern in a collection of GPS tra-
jectories. A T-pattern is a Region-of-Interest (RoI) sequence with
temporal annotations, where each RoI as a rectangle whose density
is larger than a threshold �. However, their method still relies on
rigid space partitioning. In addition, the threshold � is hard to pre-
specify for our problem: a small � will lead to very coarse regions
while a large one may eliminate fine-grained patterns.

Zheng et al. [18] study the problem mining interesting travel se-
quences from GPS trajectories. They extract top-m most interest-
ing place sequences in a given region. Such sequences, however,
are not necessarily frequent among the input trajectories. More-
over, in order to extract top-m length-n sequences, they need to
enumerate all possible place sequences and compute their scores.
Luo et al. [9] proposed a scalable method for finding the most fre-
quent path in trajectory data. Given two nodes (a source and a
destination) in a road network and a time period, their method effi-
ciently finds the most frequent path between the two nodes during
the given time period. In contrast to their problem, we seek to find
a complete set of fine-grained patterns in the Euclidean space.

Another important line in trajectory data mining is to mine a set
of objects that are frequently co-located. Efforts along this line in-
clude mining flock [7], convoy [6], swarm [8], and gathering [17]
patterns. All these patterns differ from our work in two aspects:
(1) they only model the spatio-temporal information without con-
sidering place semantics; and (2) they require the trajectories are
aligned by the absolute timestamps to discover co-located objects,
while we focus on the relative time interval in a trajectory.

There are a few studies on mining sequential patterns in seman-
tic trajectories. Alvares et al. [2] first identify the stops in GPS tra-
jectories, then match these stops to semantic places using a back-
ground map. By viewing each place as an item, they extract the
frequent place sequences as sequential patterns. Unfortunately, due
to spatial continuity, such place-level sequential patterns can appear
only when the support threshold is very low. Ying et al. [15] mine
sequential patterns in semantic trajectories for location prediction.
They define a sequential pattern as a sequence of semantic labels
(e.g., school! park). Such a definition ignores spatial and tempo-
ral information. In contrast, our fine-grained patterns consider the
spatial, temporal and semantic dimensions simultaneously.



(a) Running time w.r.t. �. (b) Running time w.r.t. �t.

Figure 8: Efficiency comparison on the 4SQ data set.

(a) Running time w.r.t. h0. (b) Running time w.r.t. ⌧ .

Figure 9: Varying parameters of SPLITTER.

(a) Varying �. (b) Varying �t.

Figure 10: Effect of the speedup strategy for splitting.

(a) Running time on S1K. (b) Running time on S10K.

Figure 11: Efficiency study on synthetic data sets.

7. CONCLUSIONS
We introduced and studied the problem of mining fine-grained

sequential patterns in semantic trajectories. We proposed SPLIT-
TER to discover fine-grained patterns in a two-step manner. By
mining coarse patterns and then progressively refining them via
weighted snippet shifting, SPLITTER can mine fine-grained pat-
terns effectively. We also proposed a divide-and-conquer strategy
to speed up the top-down pattern splitting process. Our exten-
sive experiments demonstrated the effectiveness and efficiency of
SPLITTER.

In our experiments, no coarse pattern has a length larger than 3
under meaningful settings of � and ⇢t. In case there exist very long
frequent coarse patterns, the effectiveness of the weighted snippet
shift procedure could be affected by the high dimensionality of the
transformed space. However, this limitation can be remedied us-
ing dimension reduction techniques or methods developed for mean
shift in high-dimensional space [4].

While designed for semantic trajectories, SPLITTER can be eas-
ily adapted to mine fine-grained patterns in GPS trajectories. By
clustering places into coarse regions, we can first mine coarse pat-
terns with Algorithm 1, and then feed these coarse patterns along
with their snippets to Algorithm 3 for refinement. Other interesting
future directions include evaluating the usability of the result pat-
terns and extending SPLITTER to find patterns in one long semantic
trajectory.

8. ACKNOWLEDGEMENTS
We thank the reviewers for their insightful comments. The work

was supported in part by the U.S. Army Research Laboratory under
Cooperative Agreement No. W911NF-09-2-0053 (NS-CTA) and
W911NF-11-2-0086 (Cyber-Security), the U.S. Army Research Of-
fice under Cooperative Agreement No. W911NF-13-1-0193, U.S.
National Science Foundation grants CNS-0931975, IIS-1017362,
IIS-1320617, IIS-1354329, DTRA, NASA NRA-NNH10ZDA001N,
National Science Foundation of China grant No. 61170034, and
MIAS, a DHS-IDS Center for Multimodal Information Access and
Synthesis at UIUC.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE,

pages 3–14, 1995.
[2] L. O. Alvares, V. Bogorny, B. Kuijpers, B. Moelans, J. A. Fern, E. D.

Macedo, and A. T. Palma. Towards semantic trajectory knowledge
discovery. Data Mining and Knowledge Discovery, 2007.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
24(5):603–619, 2002.

[4] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering
in high dimensions: A texture classification example. In ICCV, pages
456–463, 2003.

[5] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory
pattern mining. In KDD, pages 330–339, 2007.

[6] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen.
Discovery of convoys in trajectory databases. PVLDB,
1(1):1068–1080, 2008.

[7] P. Laube and S. Imfeld. Analyzing relative motion within groups of
trackable moving point objects. In GIScience, pages 132–144, 2002.

[8] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed
temporal moving object clusters. PVLDB, 3(1):723–734, 2010.

[9] W. Luo, H. Tan, L. Chen, and L. M. Ni. Finding time period-based
most frequent path in big trajectory data. In SIGMOD, pages
713–724, 2013.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu. Prefixspan: Mining sequential patterns by prefix-projected
growth. In ICDE, pages 215–224, 2001.

[11] I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal
patterns. In SSTD, pages 425–442, 2001.

[12] J. Wang, W. Hsu, M.-L. Lee, and J. T.-L. Wang. Flowminer: Finding
flow patterns in spatio-temporal databases. In ICTAI, 2004.

[13] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer.
Semitri: a framework for semantic annotation of heterogeneous
trajectories. In EDBT, pages 259–270, 2011.

[14] G. Yang. The complexity of mining maximal frequent itemsets and
maximal frequent patterns. In KDD, pages 344–353, 2004.

[15] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng. Semantic
trajectory mining for location prediction. In GIS, pages 34–43, 2011.

[16] M. J. Zaki. Spade: An efficient algorithm for mining frequent
sequences. Machine Learning, 42(1/2):31–60, 2001.

[17] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of
gathering patterns from trajectories. In ICDE, pages 242–253, 2013.



[18] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting
locations and travel sequences from gps trajectories. In WWW, pages
791–800, 2009.

APPENDIX
Proof of Theorem 1: As ˆf(y) is bounded, it suffices to prove the
density at the kernel window center increases after each shifting,
namely 8k, ˆf(y(k+1)

) > ˆf(y(k)
) if y(k+1) 6= y(k). Without

loss of generality, assume y(k) is the origin of the space, namely
y(k)

= 0. We denote by Nk the set of points inside the window of
y(k). The kernel density at y(k) is thus

ˆf(y(k)
) =

c

hd+2w

X

xi2Nk

wi(h
2 � kxik2). (4)

Denote by Nk+1 the points inside the window of y(k+1), and let
N\ = Nk \Nk+1. Since N\ ✓ Nk+1, we have

ˆf(y(k+1)
) � c

hd+2w

X

xi2N\

wi(h
2 � ky(k+1) � xik2). (5)

To prove ˆf(y(k+1)
) > ˆf(y(k)

), we introduce

�f =

X

xi2N\

wi(h
2 � ky(k+1) � xik2)�

X

xi2Nk

wi(h
2 � kxik2)

=

X

xi2Nk

wikxik2 �
X

xi2N\

wiky(k+1) � xik2 �
X

xi2Nk�N\

wih
2.

Note that 8xi 2 Nk �N\, ky(k+1) � xik2 > h2, hence
X

xi2Nk�N\

wih
2 <

X

xi2Nk�N\

wiky(k+1) � xik2. (6)

With Equation 6, �f satisfies:

�f >
X

xi2Nk

wikxik2 �
X

xi2Nk

wiky(k+1) � xik2

=2y(k+1)T
X

xi2Nk

wixi � ky(k+1)k
2 X

xi2Nk

wi

=ky(k+1)k
2 X

xi2Nk

wi > 0.

Recall Equation 4 and 5, since �f > 0, it is ensured

ˆf(y(k+1)
)� ˆf(y(k)

) � c

hd+2w
�f > 0,

thus completing the proof.

Proof of Lemma 1: Let z be a point in any other �-communities
Cj , namely 1  j  t and i 6= j. Consider two hyperspheres: (1)
S
z

is a radius-� hypersphere centered at z, and (2) S
y

is a radius-
h hypersphere centered at yk. Since S

y

cannot be inside S
z

, the
relationships of S

z

and S
y

can be categorized into two cases.

z y(k)m

p
r

h

HSz

z y(k)

Sy Sy

Sz

Case 1: Seperation Case 2: Intersection

Figure 12: Separation and intersection between S
z

and S
y

.

Case 1: Separation. When the two hyperspheres are separate,
since the new center must fall inside S

y

, it is ensured kz�y(k+1)k >
� �
p
2h, thus the new hypersphere at y(k+1) cannot include z.

Case 2: Intersection. When S
y

and S
z

intersect, we denote by p
an intersecting point, H the hyperplane of intersection, and m the
pedal point of z on H. Let X = {x1,x2, . . . ,xn} be the points
from Ci that reside in S

y

. Points in X must fall in S
y

� S
z

and
on the opposite side of H, i.e., 8xi 2 X , (z�m)

T
(xi �m) < 0.

With y(k+1)
= (

Pn
i=1 wixi)/(

Pn
i=1 wi), we have

(z�m)

T
(y(k+1)�m) =

1Pn
i=1 wi

nX

i=1

wi(z�m)

T
(xi�m) < 0.

Hence, the distance between z and y(k+1) satisfies:

kz� y(k+1)k2 = k(z�m) + (m� y(k+1)
)k2

=kz�mk2 + km� y(k+1)k2 + 2(z�m)

T
(m� y(k+1)

)

>kz�mk2 = kz� pk2 � km� pk2 � �2 � h2.

Given h  �/
p
2, it is ensured kz�y(k+1)k2 > �2�h2 � h2,

thus the radius-h sphere centered at y(k+1) cannot include z. As z
is an arbitrary data point not in Ci, the window centered at y(k+1)

can include only points from Ci.

Proof of Theorem 2: Assume the hypersphere at y encompasses m
points N = {x1,x2, . . . ,xm}; the hypersphere at y0 encompasses
n points N 0

= {x0
1,x

0
2, . . . ,x

0
n}. By Lemma 2, we know that

N ✓ Ci and N 0 ✓ Cj . Below, we prove y 6= y0 by contradiction.
Suppose y = y0, then the two hypersphere completely overlap,

denoted as S
y

. Then all points in N and N 0 must fall inside S
y

.
Now consider the following two cases.
Case 1: m = 1 or n = 1. Without loss of generality, assume
m = 1, then we have x = y = y0. Since all the points in N 0 reside
in S

y

0 , there must exist x0 2 N 0 such that kx�x0k  h < �. This
contradicts the definition of �-community because the minimum
distance between Ci and Cj must be at least �.

H

xi y SySx

Figure 13: Hypershpere S
x

and S
y

.

Case 2: m > 1 and n > 1. Consider an arbitrary point xi 2 N
(1  i  m). As shown in Figure 13, let H be the hyperplane that
is perpendicular to y � xi and passes y. For any point x0

j 2 N 0

(1  j  n), we have kxi � x0
jk2 > �2, namely

k(xi � y)k+ k(y � x0
j)k+ 2(xi � y)T

(y � x0
j) > �2.

It follows immediately that

2(xi�y)T
(y�x0

j) > �2�k(xi�y)k�k(y�x0
j)k � �2�2h2 > 0.

Namely (y � xi)
T
(y � x0

j) < 0 for all x0
j 2 N 0. In other words,

given xi, all points in N 0 must fall in the opposite side of H. This
contradicts the fact y =

P
x

0
j2N 0 wix

0
j/
P

x

0
j2N 0 wj , which does

not allow the points in N 0 to reside in the same side of H. There-
fore, the assumption y = y0 does not hold.


