
GeoBurst: Real-Time Local Event Detection in Geo-Tagged
Tweet Streams

Chao Zhang1, Guangyu Zhou1, Quan Yuan1, Honglei Zhuang1, Yu Zheng2,3,
Lance Kaplan4, Shaowen Wang1, and Jiawei Han1

1Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2Microsoft Research, Beijing, China

3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
4U.S. Army Research Laboratory, Adelphi, MD, USA

1{czhang82, gzhou6, qyuan, hzhuang3, shaowen, hanj}@illinois.edu
2yuzheng@microsoft.com 4lance.m.kaplan.civ@mail.mil

ABSTRACT
The real-time discovery of local events (e.g., protests, crimes, dis-
asters) is of great importance to various applications, such as crime
monitoring, disaster alarming, and activity recommendation. While
this task was nearly impossible years ago due to the lack of timely
and reliable data sources, the recent explosive growth in geo-tagged
tweet data brings new opportunities to it. That said, how to extract
quality local events from geo-tagged tweet streams in real time re-
mains largely unsolved so far.

We propose GEOBURST, a method that enables effective and
real-time local event detection from geo-tagged tweet streams. With
a novel authority measure that captures the geo-topic correlations
among tweets, GEOBURST first identifies several pivots in the query
window. Such pivots serve as representative tweets for potential
local events and naturally attract similar tweets to form candidate
events. To select truly interesting local events from the candidate
list, GEOBURST further summarizes continuous tweet streams and
compares the candidates against historical activities to obtain spa-
tiotemporally bursty ones. Finally, GEOBURST also features an
updating module that finds new pivots with little time cost when
the query window shifts. As such, GEOBURST is capable of mon-
itoring continuous streams in real time. We used crowdsourcing to
evaluate GEOBURST on two real-life data sets that contain millions
of geo-tagged tweets. The results demonstrate that GEOBURST sig-
nificantly outperforms state-of-the-art methods in precision, and is
orders of magnitude faster.

Keywords
Twitter; tweet; local event; event detection; social media

1. INTRODUCTION
A local event (e.g., protest, crime, disaster, sport game) is an un-

usual activity bursted in a local area and within specific duration
while engaging a considerable number of participants. The real-
time detection of local events was nearly impossible years ago due
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2911519

to the lack of timely and reliable data sources, yet the recent ex-
plosive growth in geo-tagged tweet data brings new opportunities
to it. With the ubiquitous connectivity of wireless networks and
the wide proliferation of mobile devices, more than 10 million geo-
tagged tweets are created in the Twitterverse every day [1]. Each
geo-tagged tweet, which contains a text message, a timestamp, and
a geo-location, provides a unified 3W (what, when, and where)
view of the user’s activity. Even though the geo-tagged tweets ac-
count for only about 2% of the entire tweet stream [16], their sheer
size, multi-faceted information, and real-time nature make them an
invaluable source for detecting local events. For example, when
the tragic 2011 Tohoku Earthquake hit Japan on March 11th 2011,
thousands of related geo-tagged tweets were created instantly; and
when the Baltimore Riot took place in April 2015, many people
posted geo-tagged tweets to broadcast it right on the spot.

We aim to achieve real-time local event detection from geo-tagged
tweet streams. This task is important as it can underpin various ap-
plications. Take disaster alarming as an example. By detecting
emergent disasters (e.g., earthquakes, fires) in real time, we can
send alarms to the populace at the very first moment when these
disasters outbreak. Such alarms can be much faster than tradi-
tional news media [9, 24, 30], and thus allow for timely response
that avoids huge life and economic losses. As another example,
the detected local events can be easily filtered by a few keywords
for activity recommendation. Consider a user who is interested
in sport games, movies, and music festivals. With proper filtering
keywords, the detector can continuously feed the user with such
activities in the city. As such, she can easily learn about what is
happening around and decide what to do.

Despite its practical importance, real-time local event detection
in the geo-tagged tweet stream is nontrivial because it introduces
several unique challenges: (1) Integrating diverse types of data.
The geo-tagged tweet stream involves three different data types:
location, time, and text. Considering the totally different represen-
tations of those data types and the complicated correlations among
them, how to effectively integrate them for local event detection is
challenging. (2) Extracting interpretable events from overwhelm-
ing noise. Existing studies have revealed that about 40% tweets are
just pointless babbles [2], and even those event-related tweets are
mostly short and noisy. As truly interesting local events are buried
in massive irrelevant tweets, it is nontrivial to accurately identify
them and describe in an interpretable way. (3) On-line and real-
time detection. When a local event outbreaks, it is key to report the
event instantly to allow for timely actions. As massive geo-tagged

tweets stream in, the detector should work in an on-line and real-
time manner instead of a batch-wise and inefficient one.

A number of studies [6, 12, 13, 28, 17, 5] have investigated event
detection in Twitter. Although these techniques have demonstrated
inspiring results in detecting global events, they are inapplicable
to detecting local events. Unlike global events that are bursty in
the entire stream, local events are “bursty” in a small geographical
region and involve a limited number of tweets. Such local bursts
cannot be readily captured by global event detection methods. Re-
cently, a few methods tailored for local event detection [15, 10, 7,
3] have been introduced. The state-of-the-art method EVENTWEET
[3] extracts the keywords that are both temporally bursty and spa-
tially localized, and then clusters those keywords into events based
on spatial distributions. Unfortunately, the quality of the result
events is limited because it does not model the semantic correla-
tions between keywords. Furthermore, EVENTWEET cannot detect
local events in real time, because it partitions the stream into fixed-
width time windows and the detection is triggered only when the
current window is saturated.

We propose GEOBURST, an effective and real-time local event
detector. Our key insight is that, a local event usually leads to a con-
siderable number of geo-tagged tweets around the occurring place
(e.g., many participants of a protest may post tweets on the spot).
As such tweets are geographically close and semantically coherent,
we call them a geo-topic cluster and consider it as a potential lo-
cal event. Nevertheless, not necessarily does every geo-topic clus-
ter correspond to a local event because (1) the activity could be
just routine in that region instead of an unusual event, e.g., many
shopping-related tweets are posted on the 5th Avenue in New York
every day; and (2) the activity may be geographically scattered in-
stead of localized, e.g., a popular TV show may result in several
geo-topic clusters in different regions. Hence, we should also care-
fully measure the spatiotemporal burstiness of each geo-topic clus-
ter to identify true local events.

Motivated by the above, the first step of GEOBURST finds all
geo-topic clusters in the query window as candidate events. Specif-
ically, we compute a tweet’s geo-topic authority by combining the
geographical and semantic contributions from its similar tweets,
where the geographical side is measured using a kernel function,
and the semantic side is captured using random walk on a keyword
co-occurrence graph. We then design an authority ascent process
to identify all pivot tweets, which are essentially authority maxima
in the geo-topic space. Such pivot tweets naturally attract similar
tweets to form geo-topic clusters.

The second step of GEOBURST ranks all the candidates based
on spatiotemporal burstiness. For this purpose, we continuously
summarize the stream and store the summaries in a space-efficient
structure called activity timeline. The stored summaries, which de-
scribe the typical activities in different regions, serve as background
knowledge to measure the spatiotemporal burstiness of geo-topic
clusters and select out local events.

Besides extracting local events from an ad-hoc query window,
GEOBURST also features an updating module that enables contin-
uous monitoring of the stream. As new geo-tagged tweets stream
in, GEOBURST can shift the query window and update the results
in real time. The updating incurs little time cost because authority
computation, which is the most time-consuming operation in the
framework, can be completed by subtracting the contributions of
outdated tweets and emphasizing the contributions of new ones.

To summarize, we make the following contributions:

1. We design GEOBURST for local event detection in the geo-
tagged tweet stream. The effectiveness of GEOBURST is un-
derpinned by a novel pivot seeking process that generates

candidate events, along with a ranking module that measures
spatiotemporal burstiness based on stream summarization.

2. With the additive property of the authority score, we design
an updating module for GEOBURST. It fast updates the event
list when the query window shifts, and thus enables real-time
and continuous local event detection.

3. We perform extensive experiments on millions of geo-tagged
tweets in two different cities, and evaluate the results us-
ing a crowdsourcing platform. Our results demonstrate that
GEOBURST significantly outperforms state-of-the-art meth-
ods in precision, and runs orders of magnitude faster.

2. RELATED WORK
Global Event Detection. Global event detection aims at extracting
events that are bursty and unusual in the entire tweet stream. Ex-
isting approaches to this end can be classified into two categories:
document-based and feature-based.

Document-based approaches consider each document as a basic
unit and group similar documents to form events. Allan et al. [6]
perform single-pass clustering of the stream, and use a similarity
threshold to determine whether a new document should form a new
topic or be merged into an existing one. Aggarwal et al. [5] also
detect events by continuously clustering the tweet stream, but their
similarity measure considers both tweet content relevance and user
proximity. Sankaranarayanan et al. [25] train a Naïve Bayes filter
to identify news-related tweets, and cluster them based on TF-IDF
similarity. They also enrich each piece of news with location infor-
mation by extracting geo-entities.

Feature-based approaches [12, 13, 21, 28, 17] identify a set of
bursty features (e.g., keywords) from the stream and cluster them
into events. Fung et al. [12] model feature occurrences with bino-
mial distribution to extract bursty features. He et al. [13] construct
the time series for each feature and perform Fourier Transform to
identify bursts. Weng et al. [28] use wavelet transform and auto-
correlation to measure word energy and extract high-energy words.
Li et al. [17] segment each tweet into meaningful phrases and ex-
tract bursty phrases based on frequency, which are clustered into
candidate events and further filtered using Wikipedia.

The above methods are all designed for detecting global events
that are bursty in the entire stream. As aforementioned, a local
event is usually bursty in a small geographical region instead of
the entire stream. Hence, directly applying these methods to the
geo-tagged tweet stream would miss many local events.

There has also been work [24, 22, 19] on detecting specific types
of events. Sakaki et al. [24] investigate real-time earthquake detec-
tion. A classifier is trained to judge whether an incoming tweet is
related to earthquake or not, and an alarm is released when the num-
ber of earthquake-related tweets is large. Li et al. [19] detect crime
and disaster events (CDE) with a self-adaptive crawler that dynam-
ically retrieves CDE-related tweets. Different from those studies,
we aim to detect all kinds of local events from the stream.

Local Event Detection. Foley et al. [11] use distant supervision
to extract local events from Web pages, but the proposed method
can only extract local events that are well advertised in advance
on the Web. Watanabe et al. [27] and Quezada et al. [23] study
location-aware events in the social media, but their major focus
is on geo-locating tweets/events, whereas we aim to automatically
extract local events from raw geo-tagged tweets.

Krumm et al. [15] propose the detection of spatiotemporal spikes
in the tweet stream as local events. Nevertheless, their approach
can only detect events for pre-defined rigid time windows (e.g., 3-6

pm, 6-9 pm), because it discretizes time and compares the number
of tweets in the same bin across different days. It supports neither
ad-hoc query windows nor real-time detection.

Chen et al. [7] extract events from geo-tagged Flickr photos.
By converting the spatiotemporal distribution of each tag into a 3-
dimensional signal, they perform wavelet transform to extract spa-
tiotemporally bursty tags, and clusters those tags into events based
on co-occurrence as well as spatiotemporal distributions. Such a
method, however, can only detect local events in batch manner.

The most relevant work to our task is by Abdelhaq et al. [3].
They propose EVENTWEET, which detects local event in a time
window with four steps: (1) examine several previous windows
to extract bursty words; (2) compute the spatial entropy of each
bursty word and select localized words; (3) cluster localized words
based on spatial distribution; and (4) rank the clusters based on
features such as burstiness and spatial coverage. Unfortunately,
EVENTWEET suffers from two drawbacks. First, the clustering of
localized keywords is merely based on spatial distribution without
considering tweet content. It results in irrelevant keywords in the
same cluster, and cannot distinguish different events that occur at
the same location. Second, although EVENTWEET is an online
method, it is incapable of detecting local events in real time, as the
detection is triggered only when the current window is saturated.

3. PRELIMINARIES
In this section, we formulate the real-time local event detection

problem, and then explore several of its characteristics, which mo-
tivate the design of GEOBURST.

Problem description. LetD = (d1, d2, . . . , dn, . . .) be a continu-
ous stream of geo-tagged tweets that arrive in chronological order.
Each tweet d is a tuple 〈td, ld, Ed〉, where td is its post time, ld is
its geo-location, and Ed is a bag of keywords. For each tweet, we
use an off-the-shelf tool1 to extract entities and noun phrases as its
keywords. Note that such preprocessing does not affect the gener-
ality of our method, and one can also represent each tweet message
as a bag of uni-grams for simplicity.

Consider a query time window Q = [ts, te] where ts and te are
the start and end timestamps satisfying td1 ≤ ts < te ≤ tdn . The
local event detection problem consists of two sub-tasks: (1) extract
from D all the local events that occur during Q; and (2) monitor
the continuous stream D and update the local event list in real time
as Q shifts continuously.

GEOBURST overview. In practice, a local event often results in a
considerable number of relevant tweets around its occurring loca-
tion. Take Figure 1 as an example. Suppose a protest occurs on the
5th Avenue in New York, many participants may post tweets on the
spot to express their attitude, with keywords such as “protest” and
“rights”. We call such a set of tweets a geo-topic cluster as they are
geographically close and semantically coherent.

fight, rights

rights

demonstration
protest

protest
shop

shop

cloth

apparel

fire, flight

fire, smoke

flight
airport

fire, disaster
flight

airport
airport, fire

smoke
fire

Figure 1: An illustration of geo-topic clusters.

Nevertheless, not necessarily does every geo-topic cluster cor-
respond to a local event even if the cluster has a large size. First,

1https://github.com/aritter/twitter_nlp

the activity can be just routine in that region. Continue with the
example in Figure 1. On almost every day, we can observe many
shopping-related tweets on the 5th Avenue. Although such tweets
also form a geo-topic cluster, they do not reflect any unusual activ-
ities. Second, the cluster may correspond to a global event instead
of a local one. For instance, when a popular TV show like “Game
of Thrones” goes online, we can observe geo-topic clusters dis-
cussing about it in different regions. Such geo-topic clusters do not
correspond to local events as well. We thus define a local event as
a geo-topic cluster that shows clear spatiotemporal burstiness.

Based on the above observations, we first detect all geo-topic
clusters in the query window and regard them as candidates — this
step ensures high coverage of the underlying local events. The dis-
covery of geo-topic clusters, however, poses several challenges:
how to combine the geographical and semantic similarities in a
reasonable way? how to capture the correlations between differ-
ent keywords? and how to generate quality clusters without know-
ing the suitable number of clusters in advance? To address these
challenges, we perform a novel pivot seeking process to identify
the centers of geo-topic clusters. Our key insight is that: the spot
where the event occurs acts as a pivot that produces relevant tweets
around it; the closer we are to the pivot, the more likely we observe
relevant tweets. Therefore, we define a geo-topic authority score
for each tweet, where the geographical influence among tweets is
captured by a kernel function, and the semantic influence by a ran-
dom walk on a keyword co-occurrence graph. With this authority
measure, we develop an authority ascent procedure to retrieve au-
thority maxima as pivots; and each pivot naturally attracts similar
tweets to form a quality geo-topic cluster. After discovering the
candidate events, we rank them by spatiotemporal burstiness. To
this end, we continuously cluster the stream to obtain summaries
of regional activities at different timestamps, and store the sum-
maries in a space-efficient structure called activity timeline. The
stored summaries serve as background knowledge that enables us
to measure the spatiotemporal burstiness of any candidate.

GEOBURST also includes a module that updates the result list in
real time as the query window shifts. It will be shown shortly that,
the authority score satisfies an additive property. Hence, instead of
finding new pivots from scratch when the query window shifts, we
can identify them by simply updating the authority scores and then
performing fast authority ascent.

We summarize the framework of GEOBURST in Figure 2. As
shown, GEOBURST offers two detection modes. The first is the
batch mode, which uses the candidate generator and the ranker to
detect local events in a fixed query window. The second is the
online mode, at the core of which is an updater that updates pivots
in real time as the query window shifts. Meanwhile, the ranker is
underpinned by the activity timeline structure, which continuously
summarizes the stream to obtain background knowledge.

Online Mode

 Batch Mode
Candidate
Generator

Tweet
Stream

Activity
Timeline

EventsRanker

Updater

Figure 2: The framework of GEOBURST.

4. THE BATCH MODE
In this section, we describe the batch mode of GEOBURST. As

aforementioned, given a query window Q, the batch mode detects
local events in Q by first generating geo-topic clusters as candidate
events, and then ranking the candidates by spatiotemporal bursti-
ness. In the sequel, we present the details of these two steps in
Sections 4.1 and 4.2, respectively.

4.1 Candidate Event Generation
Let DQ be the set of tweets falling in Q. The task of candidate

generation is to divideDQ into several geo-topic clusters, such that
the tweets in each cluster are geographically close and semanti-
cally coherent. As motivated in Section 3, our idea is to view the
occurring spot of an event as a pivot and assign each tweet to its
corresponding pivot. Below, we introduce a novel geo-topic au-
thority score to define pivot, and then develop an authority ascent
procedure for pivot seeking.

4.1.1 Pivot

Geographical impact. Given two tweets d and d′, we measure the
geographical impact of d′ to d as

G(d′ → d) = K(‖ld − ld′‖/h),

where K(·) is a kernel function, ‖ld − ld′‖ is the geographical
distance between d and d′, and h is the kernel bandwidth. While
various kernel functions can be used, we choose the Epanechnikov
kernel here due to its simplicity and optimality in terms of bias-
variance tradeoff [8]. With the Epanechnikov kernel, G(d′ → d)
becomes

G(d′ → d) =

{
c(1− ‖ld − ld′‖2/h2) if ‖ld − ld′‖ < h
0 otherwise,

where c is a scaling constant of the Epanechnikov kernel.

Semantic impact. As each tweet message is represented by a bag
of keywords, a very straightforward idea for measuring semantic
impact is to compute the vector similarity between two tweet mes-
sages. Nevertheless, the effectiveness of vector similarity is lim-
ited, not only because tweets are short in nature, but also that the
dimensions (keywords) are correlated instead of independent. To
overcome these drawbacks, we propose a random-walk-based ap-
proach to capture semantic impact more effectively.

DEFINITION 1 (KEYWORD CO-OCCURRENCE GRAPH). The
keyword co-occurrence graph for DQ is an undirected graph G =
(V,E) where: (1) V is the set of all keywords in DQ; and (2) E
is the set of edges between keywords, and the weight of an edge
(ei, ej) is the number of tweets in which ei and ej co-occur.

The keyword co-occurrence graph can be easily built from DQ.
With such a graph, we employ random walk with restart (RWR) to
define keyword similarity, as it uses the holistic graph structure to
capture node correlations. Consider a surfer who starts RWR from
the keyword x0 = u. Suppose the surfer is at keyword xt = i
at step t, she returns to u with probability α (0 < α < 1) and
continues surfing with probability 1 − α. If continuing, she ran-
domly moves to i’s neighbor j with probability Pij , where P is
the transition matrix of the graph. The stationary distribution of
such a process defines the RWR scores from u to all the keywords
in V , and the score from u to keyword v, denoted as ru→v , is the
probability that the surfer resides on v.

Now, given two tweets d and d′, we start RWR from the key-
words of d′, and define the semantic impact of d′ to d as the av-
erage probability that the random walk resides on d [20, 29]. For-
mally, let Ed = {e1, e2, . . . , em} be the keyword set of d, and

Ed′ = {e′1, e′2, . . . , e′n} the keyword set of d′, then the semantic
impact from d′ to d is

S(d′ → d) =
1

mn

∑
e∈Ed

∑
e′∈Ed′

re′→e. (1)

Geo-topic authority. Based on geographical and semantic im-
pacts, we measure the geo-topic authority of a tweet as follows.

DEFINITION 2 (NEIGHBOR). Given a tweet d, we say d′ is a
neighbor of d if d′ satisfies G(d′ → d) > 0 and S(d′ → d) > δ,
where 0 < δ < 1 is a pre-specified threshold.

DEFINITION 3 (AUTHORITY). Given a tweet d ∈ DQ, let
N(d) be the set of d’s neighbors in DQ. The authority of d is

A(d) =
∑

d′∈N(d)

G(d′ → d) · S(d′ → d). (2)

Given a tweet d, d′ is a neighbor of d if it resembles d both
geographically and semantically. The set of all neighbors in DQ
form d’s neighborhood and contribute to d’s authority. We could
interpret Equation 2 as follows: an amount ofG(d′ → d) energy is
distributed from d′ to d through random walk on the graph,G(d′ →
d) · S(d′ → d) is the amount that successfully reaches d; and
d’s authority is the total amount of energy that d receives from its
neighbors.

Pivot. With Definition 3, we define a pivot as an authority maxi-
mum.

DEFINITION 4 (PIVOT). Given a tweet d ∈ DQ and its neigh-
borhood N(d), d is a pivot if A(d) = max

d′∈N(d)
A(d′).

Consider a local event that occurs at location l. If d is a tweet
discussing about that event at l, then d is likely to be surrounded
by relevant tweets to become the pivot for that event. The notion of
neighborhood plays an important role in Definition 4: it ensures the
supporting tweets are both geographically close and semantically
relevant. This property leads to different pivots that can distinguish
different-semantics events happening at the same location, as well
as same-semantics events happening at different locations.

4.1.2 Authority ascent for pivot seeking
Now our task is to find all pivots in DQ and assign each tweet to

its corresponding pivot. We develop an authority ascent procedure
for this purpose. As shown in Figure 3, starting from a tweet d1

as the initial center, we perform step-by-step center shifting. As-
suming the center at step t is tweet dt, we find dt’s neighborhood
N(dt), and the local pivot l(dt) — the tweet having the largest
authority in N(dt). Then we regard l(dt) as our new center, i.e.,
dt+1 = l(dt). As we continue such an authority ascent process,
the center is guaranteed to converge to an authority maximum. It is
because every shift operation increases the authority of the current
center, and the authority is upper bounded (there are only a finite
number of tweets in DQ).

Candidate Event Generation. Algorithm 1 depicts the process of
finding the pivot for every tweet inDQ. As shown, we first compute
the neighborhood for each tweet d ∈ DQ (lines 1-2). Subsequently,
we compute the authority of each tweet (lines 3-4), and obtain its
local pivot (lines 5-6). So long as the local pivots are obtained, we
perform authority ascent to identify the pivot each tweet belongs
to. Finally, the tweets having the same pivot are grouped into one
geo-topic cluster and returned as a candidate event.

neighborhood

d1 d2
d3

neighbor

local pivot

pivot

Figure 3: An illustration of the authority ascent process.

Algorithm 1: Pivot seeking.
Input: The tweet set DQ, the kernel bandwidth h, the

semantic threshold δ.
Output: The pivot for each tweet in DQ.
// Neighborhood computation.

1 foreach d ∈ DQ do
2 N(d)← {d′|d′ ∈ DQ, G(d′ → d) > 0, S(d′ → d) >

δ};
// Authority computation.

3 foreach d ∈ DQ do
4 A(d)← d’s authority score computed from N(d);

// Find local pivot for each tweet.
5 foreach d ∈ DQ do
6 l(d)← arg max

d′∈N(d)
A(d′);

// Authority ascent.
7 foreach d ∈ DQ do
8 Perform authority ascent to find the pivot for d;

Fast RWR score computation. In Algorithm 1, while it is easy
to compute geographical impact based on tweet location, the chal-
lenge is how to compute semantic impact efficiently. A naïve idea
is to obtain the RWR score between any two keywords, but such
an idea is not efficient as the keyword co-occurrence graph can be
large. To address this challenge, we leverage the locality of RWR:
given a keyword q, we observe that only a limited number of key-
words falling in q’s vicinity have large values, while most keywords
have extremely small RWR scores. We thus introduce the concept
of keyword vicinity, which keeps only large enough RWR scores by
exploring a small neighborhood around q. Below, we demonstrate
how to fast compute the keyword vicinity based on the Decompo-
sition Theorem [14].

THEOREM 1. For a keyword u, let Ou be the set of u’s out-
neighbors in G. Given a keyword q, the RWR from u to q satisfies

ru→q =

(1− α)

∑
v∈Ou

Puvrv→q if u 6= q

(1− α)
∑
v∈Ou

Puvrv→q + α if u = q.
(3)

Theorem 1 says that, the RWR from u to q can be derived by lin-
early combining the RWR scores of u’s out-neighbors, with extra
emphasis on q itself. With this theorem, we use a local computation
algorithm [20] to obtain q’s vicinity. Starting from an initial vicin-
ity, we gradually expand the vicinity and propagate RWR scores
among the keywords falling inside. The RWR approximation be-
comes tighter and tigher as the vicinity expansion continues, and
terminates when an error bound ε (0 < ε � δ) is guaranteed.
Algorithm 2 depicts the detailed vicinity computation process. To
compute q’s vicinity, we maintain two quantities for any keyword
u: (1) s(u) is the current RWR score from u to q; and (2) p(u) is
the score that needs to be propagated. We use a priority queue to
keep p(u) for all the keywords. Every time we pop the keyword

Algorithm 2: Approximate RWR score computation.
Input: The keyword co-occurrence graph G, a keyword q, the

restart probability α, an error bound ε.
Output: q’s vicinity Vq .

1 s(q)← α, p(q)← α, Vq ← φ;
2 Q← a priority queue that keeps p(u) for the keywords in G;
3 while Q.peek() ≥ αε do
4 u← Q.pop();
5 for v ∈ I(u) do
6 ∆s(v) = (1− α)pvup(u);
7 s(v)← s(v) + ∆s(v);
8 Vq[v]← s(v);
9 Q.update(v, p(v) + ∆s(v));

10 p(u)← 0;

11 return Vq;

u that has the largest to-propagate score, and update the score and
to-propagate score for each in-neighbor of u. After that, we set
p(u) to zero to avoid redundant propagation. The algorithm termi-
nates when the max element in the priority queue is less than αε,
and returns all the keywords that have non-zero RWR scores as q’s
vicinity. Any keyword u not in q’s vicinity must satisfy ru→q < ε.

THEOREM 2. Let r̂u→q be the approximate RWR score com-
puted by Algorithm 2, then r̂u→q satisfies |ru→q − r̂u→q| ≤ ε.
The time complexity of Algorithm 2 isO(Dq/α log 1/(εα)), where
Dq =

∑
u:su→q>αε

(|I(u)|+ log |V |).

PROOF. See [20] for details.

4.2 Candidate Ranking
Up to now, we have obtained a set of geo-topic clusters in the

query window as candidate events. Nevertheless, as discussed in
Section 3, not necessarily does every candidate correspond to a lo-
cal event because it can be either routine in that region or a global
event. In this subsection, we describe GEOBURST’s ranking mod-
ule, at the core of which is the activity timeline structure to facili-
tate ranking candidates by spatiotemporal burstiness. In what fol-
lows, we describe activity timeline construction in Section 4.2.1,
and present the ranking function in Section 4.2.2.

4.2.1 Activity timeline construction
The activity timeline aims at summarizing the stream to unveil

typical activities in different regions during different time periods.
For this purpose, we design a structure called tweet cluster (TC),
and extend CluStream [4], an effective stream clustering algorithm.

Let S be a set of tweets that are geographically close, its TC
maintains the following statistics:

1) n = |S|: the number of tweets.
2) ml =

∑
d∈S ld: the sum vector of locations.

3) ml2 =
∑
d∈S ld ◦ ld: the squared sum vector of locations.

4) mt =
∑
d∈S td: the sum of timestamps.

5) mt2 =
∑
d∈S t

2
d: the squared sum of timestamps.

6) me =
∑
d∈S Ed: the sum dictionary of keywords.

The TC essentially provides a where-when-what summary for S:
(1) where: with n, ml, and ml2 , one can easily compute the mean
location and spatial variance for S; (2) when: with n,mt, andmt2 ,
one can easily compute the mean time and temporal variance for S;
and (3) what: me keeps the number of occurrences for each key-
word. As we shall see shortly, those fields enable us to estimate the
number of keyword occurrences at any location. Moreover, TC sat-
isfies the additive property, i.e., the fields can be easily incremented

if a new tweet is absorbed. Based on this property, we adapt CluS-
tream to continuously clusters the stream into a set of TCs. When
a new tweet d arrives, it finds the TC m that is geographically clos-
est to d. If d is within m’s boundary (computed from n, ml, and
ml2 , see [4] for details), it absorbs d into m and updates its fields;
otherwise it creates a new TC for d. Meanwhile, we employ two
strategies [26] to limit the maximum number of TCs: (1) deleting
the TCs that are too old and contain few tweets; and (2) merg-
ing closest TC pairs until the number of remaining TCs is small
enough.

The activity timeline is a sequence of clustering snapshots pro-
duced by CluStream at different timestamps. As storing the snap-
shot of every timestamp is unrealistic, we use the pyramid time
frame (PTF) structure [4] to achieve both good space efficiency
and high coverage of the stream history. The PTF structure im-
poses finer granularity for recent snapshots and coarser granular-
ity for old ones. It involves two integer parameters: b > 1 and
l > 0. Given a tweet stream D, assume the start timestamp is 0
and the most recent timestamp is T . PTF creates dlogb T e layers:
0, 1, logb T . Each layer i stores the snapshots for the times-
tamps that can be divided by bi. If a timestamp matches multiple
layers, it is stored in the highest possible layer to avoid redundancy.
Further, every layer has a capacity of bl + 1 so that only the latest
bl + 1 snapshots are stored. As such, the total number of snapshots
in PTF is no larger than (bl + 1)dlogb(T)e.

EXAMPLE 1. Suppose the start timestamp of the stream is 0
and the most recent timestamp is 25. Then the maximum layer in
the corresponding PTF is blog2 25c = 4, and the capacity of each
layer is 5. The snapshots stored in different layers are:

Layer 0 : 25 23 21 19 17;
Layer 1 : 22 18 14 10 6;
Layer 2 : 20 12 4;
Layer 3 : 24 8;
Layer 4 : 16.

4.2.2 The ranking function
The snapshots stored in the activity timeline serve as background

knowledge for ranking candidate events. To derive the ranking
score of candidate C, we quantify the spatiotemporal burstiness
of each keyword in C, and then aggregate the burstiness of all the
keywords as C’s final ranking score.

Temporal burstiness. First, we measure how temporally bursty a
keyword k ∈ C is at the pivot location lC , by vertically comparing
C against the historical activities at lC . As shown in Figure 4,
we retrieve the snapshots in a reference time window R that right
precedes the query window Q. Each pair of consecutive snapshots
in R corresponds to a historical activity, defined as follows.

DEFINITION 5 (HISTORICAL ACTIVITY). Let s1 and s2 be
two snapshots at timestamp ts1 and ts2 (ts1 < ts2). The historical
activity during the time interval [ts1 , ts2] is the set of TCs obtained
by subtracting s1 from s2.

Let us use an example in Figure 4 to illustrate how we acquire
historical activities in the reference window R. As shown, the
snapshots s1, s2, s3, s4 fall in R. For each pair of consecutive
snapshots, i.e.,[s1, s2], [s2, s3], [s3, s4], we perform snapshot sub-
traction to obtain the historical activity during the respective time
interval. For instance, for the snapshot pair [s1, s2], we subtract
s1 from s2 and obtain the historical activity, represented as a set
of TCs: {m1,m2,m4,m6,m7,m8}. Note that the subtraction of
two snapshots can be easily done by matching TC ids and subtract-
ing the fields.

reference
window R

query
window Q

time

snapshot

m2

m1 m3

m4

m5
m6

m7 m8

m2

m1 m3

m4

m5
m6

m2

m1

m4

m6
m7 m8

subtract

-
historical
activity

for [s1, s2]

s4s3s2s1

C

TC after
subtraction

candidate
eventTC

TC matching

activity timeline

Figure 4: Retrieving historical activities from activity timeline.

Using each historical activity, we can employ kernel density es-
timation to infer the expected number of occurrences of keyword k
at location lC . Consider the query time window Q = [ts, te] and
the historical activity in [t′s, t

′
e]. Denote the set of TCs in [t′s, t

′
e]

as {m1,m2, . . . ,mn} . We estimate the number of occurrences of
keyword k at location lC as:

Nl(k) =
te − ts
te′ − ts′

n∑
i=1

K(
‖lC − lmi‖

h
)Nmi(k),

where Nmi(k) is the number of k’s occurrences in mi, lmi is the
mean location ofmi, and h is the kernel bandwidth. AsR contains
multiple historical activities, and each can generate an estimation
of keyword k’s occurrences at location lC , we obtain a set of esti-
mations, denoted as Ωt = {N̂1(k), N̂2(k), . . . , N̂c(k)}. Then we
use z-score to quantify k’s temporal burstiness at lC :

zt(k) =
N(k)− µΩt

σΩt

,

whereN(k) is k’s actual number of occurrences inC, and µΩt and
σΩt are the mean and standard deviation of Ωt.

Spatial burstiness. To measure spatial burstiness, we horizontally
compare all the candidates in Q. The rationale is that, among the
spatially scattered candidates, a keyword k in candidate C is spa-
tially bursty if k’s proportion in C is significantly higher than in
other candidates. Given n candidate events C1, C2, . . . , Cn, let Pi
denote the keyword probability distribution of candidate Ci. With
Ωs = {P1(k), P2(k), . . . , Pn(k)}, we compute the spatial bursti-
ness of keyword k in candidate Ci as:

zs(k) =
Pi(k)− µΩs

σΩs

,

where µΩs and σΩs are the mean and standard deviation of Ωs.

Ranking function. For each keyword k in a candidate C, we have
used vertical comparison against the historical activities to mea-
sure its temporal burstiness, and horizontal comparison with the
other candidates to measure its spatial burstiness. As the final step,
we compute the ranking score of candidate C by aggregating the
burstiness of all the keywords in C:

s(C) =
∑
k∈C

wC(k)(ηzt(k) + (1− η)zs(k)),

where η (0 < η < 1) is a factor balancing the spatial and temporal
burstiness; and wC(k) is the TF-IDF weight of keyword k.

5. THE ONLINE MODE
In this section, we present the online mode of GEOBURST. Con-

sider a query window Q, let Q′ be the new query window after Q
shifts. Instead of finding local events inQ′ from scratch, the online
mode leverages the results inQ and updates the event list with little
cost. The updated event list is guaranteed to be the same as directly
running batch-mode detection on Q′.

In GEOBURST’s two steps, the candidate generation step has a
dominating time cost. At the core of the online mode is thus an
updating module that finds new pivots in the new window Q′ with
little overhead. Let DQ be the tweets falling in Q and D′

Q be the
tweets in Q′. We denote by RQ the tweets removed from DQ, i.e.,
RQ = DQ − D′

Q; and by IQ the tweets inserted into DQ, i.e.,
IQ = D′

Q − DQ. In the sequel, we design a strategy that finds
pivots in D′

Q by just processing RQ and IQ.
Recall that, the pivot seeking process first computes the local

pivot for each tweet and then performs authority ascent via a path
of local pivots. So long as the local pivot information is correctly
maintained for each tweet, the authority ascent can be fast com-
pleted. The key to avoiding finding pivots from scratch is that, as
DQ is changed to D′

Q, only a number of tweets have their local
pivots changed. We call them mutated tweets and identify them by
analyzing the influence of RQ and IQ.

DEFINITION 6 (MUTATED TWEET). A tweet d ∈ D′
Q is a

mutated tweet if d’s local pivot in D′
Q is different from its local

pivot in DQ.

For any tweet, it can become a mutated tweet only if at least
one of its neighbors has authority change. Therefore, we take a
reverse search strategy to find mutated tweets. We first identify in
D′
Q all the tweets whose authorities have changed. Then for each

authority-changed tweet t, we retrieve the tweets that regard t as
its neighbor, and update their local pivots. Hence, the key becomes
how to find authority-changed tweets. In what follows, we handle
RQ and IQ to this end.

Handling deletions. The deletion of a tweet d ∈ RQ can cause
authority change in two ways. First, for the tweets having d as a
neighbor in DQ, their authorities decrease. Second, the keyword
co-occurrence graph may evolve because of deleting d. As a result,
the vicinities of certain keywords need to be recomputed and the
authorities of corresponding tweets may change. The first case can
be easily handled due to the additive property of authority. When
d is deleted, we simply retrieve the tweets having d as a neighbor
in DQ. For each of those tweets, we subtract d’s contribution from
the authority score. For the second case, the key is to identify the
keywords that need vicinity recomputation. Let us look at an ex-
ample in Figure 5. If d contains two keywords e1 and e2, deleting
d would decrease the weight of the edge [e1, e2]. For any other
keywords having e1 or e2 in their old vicinities (e3 and e4 in this
example), we mark them as to-recompute keywords. However, we
defer the computation of their vicinities until IQ is handled to iden-
tify the complete set of to-recompute keywords.

e1 e2
e3 e4

Figure 5: Updating the keyword co-occurrence graph and key-
word vicinities.

Handling insertions. A new tweet d ∈ IQ can also cause authority
changes in two ways: (1) increasing the authority of the tweets that

regard d as a neighbor; and (2) making the keyword co-occurrence
graph evolve. Here, we need to first deal with the second case to en-
sure authority computation in the first case is based on the updated
keyword vicinities. Similarly, we identify the keywords whose at-
taching edges have weight change, and mark other keywords that
include such keywords in their vicinities. After all the to-recompute
keywords are identified, we call Algorithm 2 to obtain their new
vicinities. Once the keyword vicinities are updated, we retrieve the
affected tweet pairs and update the corresponding authority scores.
For the second case, now that the keyword vicinities have already
been updated, for the inserted tweet d, we simply find which other
tweets having d as their neighbor, and then add d’s contribution to
their authorities.

6. EXPERIMENTS
We evaluate the empirical performance of GEOBURST in this

section. All the algorithms were implemented in JAVA and the ex-
periments were conducted on a computer with Intel Core i7 2.4Ghz
CPU and 8GB memory.

6.1 Experimental Setup
Data Set. Our experiments are based on two real-life data sets,
both of which are crawled using Twitter Streaming API2 during
2014.08.01 — 2014.11.30. The first data set, referred to as NY,
consists of 9.5 million geo-tagged tweets in New York. After re-
moving the tweets having no entities or noun phrases, we obtain
2.4 million tweets. The second data set, referred to as LA, con-
sists of 9.9 million geo-tagged tweets in Los Angeles, and there are
2.8 million tweets that have entities and/or noun phrases. The rea-
son we choose these two cities is because they have quite different
population distributions — the populace of New York is relatively
concentrated in Manhattan and Brooklyn, while the populace of
Los Angeles is spread out in many different districts.

Compared methods. For comparison, we implemented two exist-
ing local event detection methods. The first is EVENTWEET [3],
which extracts bursty and localized keywords as features, and then
clusters those features based on their spatial distributions. The sec-
ond is WAVELET [7], which uses wavelet transform to identify spa-
tiotemporally bursty keywords and then clusters them by consider-
ing both co-occurrence and spatiotemporal distribution.

Parameters. There are four major parameters in GEOBURST: (1)
the kernel bandwidth h; (2) the restart probability α; (3) the RWR
similarity threshold δ; and (4) the ranking parameter η for balanc-
ing spatial and temporal burstiness. Unless stated explicitly, we
set h = 0.01, α = 0.2, δ = 0.02, and η = 0.5. EVENTWEET
partitions the whole space into N × N small grids. We find N
is EVENTWEET’s most sensitive parameter, and set N = 50 after
tuning. For WAVELET, the most sensitive parameters are the granu-
larities for constructing the spatiotemporal signal. After tuning, we
set the space partitioning granularity to δx = 0.1, δy = 0.1; and
the time granularity to δt = 3 hours.

6.2 Effectiveness Study
To evaluate effectiveness, we randomly generate 80 query time

windows that are non-overlapping during 2014.08.01 — 2014.11.30.
Among them, there are 20 3-hour windows, 20 4-hour ones, 20 5-
hour ones, and 20 6-hour ones. As all the three methods require a
reference window, we use a 5-day reference window right preced-
ing each query. For every query, we run the three methods to re-
trieve top-5 local events on the two data sets, and upload the results

2https://dev.twitter.com/streaming/overview

to CrowdFlower3, a popular crowdsourcing platform, for evalua-
tion. For GEOBURST, we ran both its batch mode and online mode
to detect local events in the query window, and found these two
modes produce exactly the same results. Thus, we only upload the
results produced by the online mode and report its effectiveness.

On CrowdFlower, we represent each event with 5 most represen-
tative tweets as well as 10 representative keywords, and ask three
CrowdFlower workers to judge whether the event is indeed a lo-
cal event or not. To ensure the quality of the workers, we label
10 queries for groundtruth judgments on each data set, such that
only the workers who can achieve no less than 80% accuracy on
the groundtruth can submit their answers. Finally, we use majority
voting to aggregate the workers’ answers.

The representative tweets and keywords are selected as follows:
(1) For GEOBURST, each event is a cluster of tweets, we select the
5 tweets having the largest authority scores, and the 10 keywords
having the largest TF-IDF weights. (2) EVENTWEET represents
each event as a group of keywords. We select top-10 keywords in
each event. Then we regard the group of keywords as a query to
retrieve the top-5 most similar tweets in the query window using
the BM25 retrieval model. (3) WAVELET represents an event with
both keywords and matching tweets. We simply select the top-5
tweets and the top-10 keywords.

6.2.1 Quantitative analysis
After gathering judgments from CrowdFlower, we compute the

precision for each method. Figure 6 shows the precisions of the
three methods on NY and LA when K and query interval vary.
One may notice that the overall precision is not high for all the
three methods. This phenomenon is reasonable because the query
time windows are generated randomly. There are chances that some
query windows fall in a time period (e.g., early morning) during
which no local events happened in the city.

P@1 P@2 P@3 P@4 P@5
K

0.00

0.05

0.10

0.15

0.20

0.25

P
re

ci
si

on

3 4 5 6
Query interval (hour)

0.00

0.08

0.16

0.24

0.32

GeoBurst EvenTweet Wavelet

(a) Precision comparison (NY).

P@1 P@2 P@3 P@4 P@5
K

0.00

0.08

0.16

0.24

0.32

0.40

P
re

ci
si

on

3 4 5 6
Query interval (hour)

0.00

0.08

0.16

0.24

0.32

0.40
GeoBurst EvenTweet Wavelet

(b) Precision comparison (LA).
Figure 6: Precision comparison of GEOBURST, EVENTWEET,
and WAVELET.

Comparing the three methods, we find that GEOBURST signifi-
cantly outperforms EVENTWEET and WAVELET on both data sets.
The huge improvements indicate the superiority of GEOBURST’s
two-step scheme: (1) the candidate generation step ensures a good
coverage of all potential local events; and (2) the ranking step effec-

3http://www.crowdflower.com/

tively identifies true local events by carefully measuring spatiotem-
poral burstiness.

We also observe that the precisions of the three methods all in-
crease with the query interval. It is because a larger query interval
is more likely to cover a time period in which certain local events
have taken place.

6.2.2 Illustrative cases
Now we perform a case study on NY to compare the local events

detected by the three methods. We choose the query window to be
7 – 10pm on November 7th 2014 and show the top-3 local events
detected by different methods in Figure 7. For each event, we show
the messages of the top-3 tweets, highlight the representative key-
words, and plot the locations of the member tweets.

Examining the results of GEOBURST, one can see the generated
geo-topic clusters are of high quality: the tweets in each cluster
are both geographically compact and semantically coherent. Inter-
estingly, GEOBURST can group the tweets that discuss about the
topic using different keywords (e.g., “Thai Restaurant” and “Asian
Dishes”). This is because the RWR measure effectively captures
the subtle semantic correlations between keywords. Another inter-
esting observation is that, the pivot tweet of each cluster is highly
interpretable. This is because such high-quality tweets mention
most important keywords about the topic and locate closely to the
occurring spot, thereby receiving high authority scores.

For the given query, the top two clusters produced by GEOBURST
correspond to two local events: (1) the New York Festival of Light,
which is held under the Manhattan Bridge; and (2) the basketball
game between two NBA teams — Brooklyn Nets and New York
Knicks. The third cluster is a group of tweets discussing about
dinner instead of any interesting local events. Nevertheless, our
investigation into its z-score reveals that there is a huge score gap
(16.23 versus 0.73) between the second cluster and the third one.
This suggests that one can easily use a z-score threshold to rule out
non-event clusters in practice.

EVENTWEET also successfully detects the basketball game be-
tween Nets and Knicks. Nevertheless, the interpretability of the re-
sult event is not satisfactory, because it just groups bursty keywords
based on their spatial distributions. As a result, the keywords in the
same cluster may not be semantically coherent. One may notice
that there exist geographically faraway tweets in the same cluster.
This is because EVENTWEET is a feature-based method that uses
only keywords to represent an event. As the matching tweets are re-
trieved based on keyword similarity, it is possible that some tweets
are geographically faraway even if they use the same keywords.

For WAVELET, it also reports the basketball game event, but
misses the event of New York Festival of Light. The result clus-
ters are of high quality as WAVELET considers both keyword co-
occurrence information and spatiotemporal distribution during the
clustering process. Nevertheless, the major drawback of WAVELET
is that it tends to miss many local events in the query window. Us-
ing wavelet transform for bursty keyword identification, WAVELET
is more suitable for extracting influential local events on a tweet
collection that spans a long time period, rather than real-time local
event detection in an ad-hoc query window.

6.3 Efficiency Study
To study the efficiency of the three methods, we generate 200

random queries with different lengths. For every query, we run
each method for 10 times and report the average running time.

6.3.1 Running time comparison
In the first set of experiments, we compare the running time of

Wavelet

EvenTweet

GeoBurst
1. Festival of Light! #nyfol (@ The Archway under the Manhattan Bridge in Brooklyn, NY)
2. #Lasers and beats under the Manhattan Bridge! #NewYorkFestivalofLight #NYFOL @ DUMBO
3. New York Festival of Lights #nyfol #dumbo @ DUMBO, Brooklyn

1. Knicks vs. Nets at Barclays Center. @ Barclays Center http://t.co/PILk1xK3Tn
2. Brooklyn go hard @ Barclays Center http://t.co/iVUsJJ5TNG
3. Let’s go Knicks! #NETS1107 (@ Barclays Center - @brooklynnets for @nyknicks vs @BrooklynNets)

1. #Thai Restaurant #spicythaifood (@ 104 2nd Avenue in New York, NY)
2. The ASIAN DISHES here are always my favorite. @ Ugly Kitchen
3. Dinner time with my family. Suuuuper Nice Indian RESTAURANT! @ Malai Marke Indian Cuisine.

1. I practiced... Almost time for Amy Schumer. Jennifer (@ Carnegie Hall) https://t.co/HfqfTLmK2y
2. 2014 Gold Glove Awards Ceremony with Hall of Famers, All-Stars Jay Leno @ The Plaza Hotel
3. My best attempt at a selfie with Hugh Jackman after The River at CITS @ The River on Broadway

1. Knicks vs. Nets at Barclays Center. @ Barclays Center http://t.co/PILk1xK3Tn
2. Budweiser brings everyone together #family #nonewfriends @ Alchemy Tavern, Brooklyn
3. #Knicks vs #nets with my best gal. @ Barclays Center Brooklyn http://t.co/eXXMUKxpIs

1. #katespade @ Kate Spade / Jack Spade HQ http://t.co/g6jiFwyc4M
2. Inspiring keynote by Twitter CEO, Dick Costolo @GirlsWhoCode Gala. http://t.co/yEGh803CuT
3. I wonder if Jake from Statefarm covers Jumanji?

1. Spike’s face says it all. Sorry Knicks fans maybe next time. @Brooklynnets #Nets @ Barclays Center
2. #Knicks vs #nets with my best gal. @ Barclays Center Brooklyn http://t.co/eXXMUKxpIs
3. Brooklyn go hard @ Barclays Center http://t.co/hPooLfa9pQ

1. #BEMF (at @VerbotenNewyork in Brooklyn, NY) https://t.co/uVgTHNZzSP
2. Starting the weekend right. (at @VerbotenNewyork in Brooklyn, NY) https://t.co/cRiPHK1Qdy
3. What a NIGHT!! @ Irving Plaza

1. Alex from target isn't even cute...
2. Thank you Alex and Eric and chief Alex and @nyysteak dad loves his long bone.
3. So here I am in NYC alone without Alex. but I know who i am I'm in the right direction.

2

3

1

2

3

1

2

3

#1

#2

#3

#1

#2

#3

#1

#2

#3

1 Yes

Yes

No

No

Yes

No

Yes

No

No

Is event?

Is event?

Is event?

Figure 7: Top-3 local events detected by different methods in New York during 7 – 10pm, November 7th 2014.

GEOBURST against EVENTWEET and WAVELET. We run GEOBURST
in both batch mode and online mode. Given a query windowQ, the
batch mode performs candidate generation and ranking in Q; the
online mode considers a window Q′ that precedes Q by 10 min-
utes, and finds local events in Q by updating the results in Q′.

Figure 8 shows the running time of the three methods on NY
and LA. We observe that GEOBURST is much more efficient than
EVENTWEET and WAVELET even when in the batch mode. This
phenomenon is explained by two facts. First, in the candidate gen-
eration step, the approximate RWR computation strategy can effec-
tively speed up the pivot seeking process. Second, in the ranking
step, GEOBURST just uses a number of historical activities to com-
pute z-scores, which is very efficient (we found that the running
time of the ranking step accounts for less than 1% of GEOBURST’s
total running time). Meanwhile, the online mode is even much
faster than the batch mode. This is expected as the online mode
does not need to find pivots from scratch in the time-consuming
candidate generation step, but just needs to process the updated
tweets and can achieve excellent efficiency.

The major overhead of EVENTWEET and WAVELET is due to
their space partitioning strategy. Specifically, EVENTWEET needs
to compute spatial entropy to select localized keywords and per-
form clustering based on keyword spatial distributions; WAVELET
needs to perform wavelet transform on the spatiotemporal signal
and compute the spatiotemporal KL-divergence between keywords.
One may propose to partition the space at a coarser granularity to
improve the running time of the two methods, but that comes with
the price of being much less effective. Note that the running time of

3.0 3.5 4.0 4.5
query tweet 1e3

0

8

16

24

Ti
m

e
(s

ec
)

GeoBurst-Online
GeoBurst-Batch

EvenTweet
Wavelet

(a) Running time (NY).

3.0 3.6 4.2 4.8
query tweet 1e3

0

8

16

24
Ti

m
e

(s
ec

)

GeoBurst-Online
GeoBurst-Batch

EvenTweet
Wavelet

(b) Running time (LA).
Figure 8: Running time v.s. # tweets in the query window.

WAVELET remains almost unchanged when the number of tweets
increases. The reason is WAVELET finds events in an augmented
window that includes both reference and query tweets. As our
queries are at the same scale of several hours, we fixed the length of
the reference window to 5 days. Accordingly, the running time of
WAVELET is not affected much by the length of the query interval.

6.3.2 Throughput Study
In Figure 9, we report the scalability of GEOBURST’s online

mode when the number of updates varies:

#updates = #deleted tweets + #inserted tweets.

To this end, we choose a 3-hour query window Q. Then we use
a window Q′ that precedes Q by 1, 2, . . ., 8, 9, 10 minutes, re-
spectively, and update the results in Q′. One can observe that the
running time of the online mode shows good scalability with the
number of updates. For example, when there are as many as 212
updates, the online mode takes just 0.282 second to finish on the

NY data set. Such performance suggests that, GEOBURST’s online
mode is capable of continuously monitoring the stream and realiz-
ing real-time detection.

0 50 100 150 200 250
update

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
(s

ec
)

(a) Time v.s. # update (NY).

0 60 120 180 240 300
update

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
(s

ec
)

(b) Time v.s. # update (LA).
Figure 9: Throughput of GEOBURST’s online mode.

We proceed to study the throughput of GEOBURST for construct-
ing the activity timeline. We apply GEOBURST to construct activ-
ity timeline on NY and LA and periodically record the number of
tweets processed so far and the running time. As shown in Fig-
ure 10, GEOBURST finished constructing activity timeline for 2.4
million tweets in 341.35 seconds on NY, and 2.8 million tweets in
330.82 seconds on LA, and it scales well with the number of tweets.

0.0 0.5 1.0 1.5 2.0 2.5
processed tweet 1e6

0

80

160

240

320

Ti
m

e
(s

ec
)

(a) Time v.s. # tweet (NY).

0.5 1.0 1.5 2.0 2.5 3.0
processed tweet 1e6

0

80

160

240

320

Ti
m

e
(s

ec
)

(b) Time v.s. # tweet (LA).
Figure 10: Throughput of activity timeline construction.

7. CONCLUSION
We studied the problem of real-time local event detection in the

geo-tagged tweet stream. We proposed the GEOBURST detector.
To the best of our knowledge, GEOBURST is the first method that is
capable of extracting highly interpretable local events in real time.
GEOBURST first generates candidate events based on a novel pivot
seeking process, and then leverages the continuous summarization
of the stream as background knowledge to rank the candidates.
Our extensive experiments have demonstrated that GEOBURST is
highly effective and efficient. The usage of GEOBURST is not lim-
ited to Twitter. Rather, any geo-textual social media stream (e.g.,
Instagram photo tags, Facebook posts) can use GEOBURST to ex-
tract interesting local events as well. For future work, it is inter-
esting to extend GEOBURST for handling the tweets that mention
geo-entities but do not include exact GPS coordinates. We plan
to pursue this direction by augmenting GEOBURST with existing
geo-locating techniques [18, 27].

8. ACKNOWLEDGEMENTS
This work was sponsored in part by the U.S. Army Research Lab.

under Cooperative Agreement No. W911NF-09-2-0053 (NSCTA),
National Science Foundation IIS-1017362, IIS-1320617, and IIS-
1354329, HDTRA1-10-1-0120, NSFC (Grant No. 61572488), and
Grant 1U54GM114838 awarded by NIGMS through funds pro-
vided by the trans-NIH Big Data to Knowledge (BD2K) initia-
tive (www.bd2k.nih.gov), and MIAS, a DHS-IDS Center for Mul-
timodal Information Access and Synthesis at UIUC. The views and
conclusions contained in this document are those of the author(s)
and should not be interpreted as representing the official policies of
the U.S. Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
hereon.

9. REFERENCES
[1] http://goo.gl/GQF38b.
[2] http://goo.gl/i0Gdol.
[3] H. Abdelhaq, C. Sengstock, and M. Gertz. Eventweet: Online

localized event detection from twitter. PVLDB, 6(12):1326–1329,
2013.

[4] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for
clustering evolving data streams. In VLDB, pages 81–92, 2003.

[5] C. C. Aggarwal and K. Subbian. Event detection in social streams. In
SDM, pages 624–635, 2012.

[6] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and
tracking. In SIGIR, pages 37–45, 1998.

[7] L. Chen and A. Roy. Event detection from flickr data through
wavelet-based spatial analysis. In CIKM, pages 523–532, 2009.

[8] D. Comaniciu and P. Meer. Mean shift analysis and applications. In
ICCV, pages 1197–1203, 1999.

[9] S. Doan, B.-K. H. Vo, and N. Collier. An analysis of twitter messages
in the 2011 tohoku earthquake. In Electronic Healthcare, pages
58–66. Springer, 2012.

[10] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and
J. Huang. Streamcube: Hierarchical spatio-temporal hashtag
clustering for event exploration over the twitter stream. In ICDE,
pages 1561–1572, 2015.

[11] J. Foley, M. Bendersky, and V. Josifovski. Learning to extract local
events from the web. In SIGIR, pages 423–432, 2015.

[12] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty
events detection in text streams. In VLDB, pages 181–192, 2005.

[13] Q. He, K. Chang, and E.-P. Lim. Analyzing feature trajectories for
event detection. In SIGIR, pages 207–214, 2007.

[14] G. Jeh and J. Widom. Scaling personalized web search. In WWW,
pages 271–279, 2003.

[15] J. Krumm and E. Horvitz. Eyewitness: Identifying local events via
space-time signals in twitter feeds. In SIGSPATIAL, 2015.

[16] K. Leetaru, S. Wang, G. Cao, A. Padmanabhan, and E. Shook.
Mapping the global twitter heartbeat: The geography of twitter. First
Monday, 18(5), 2013.

[17] C. Li, A. Sun, and A. Datta. Twevent: segment-based event detection
from tweets. In CIKM, pages 155–164, 2012.

[18] G. Li, J. Hu, J. Feng, and K.-l. Tan. Effective location identification
from microblogs. In ICDE, pages 880–891, 2014.

[19] R. Li, K. H. Lei, R. Khadiwala, and K.-C. Chang. Tedas: A
twitter-based event detection and analysis system. In ICDE, pages
1273–1276, 2012.

[20] P. Lofgren and A. Goel. Personalized pagerank to a target node.
arXiv:1304.4658, 2013.

[21] M. Mathioudakis and N. Koudas. Twittermonitor: trend detection
over the twitter stream. In SIGMOD, pages 1155–1158, 2010.

[22] S. Phuvipadawat and T. Murata. Breaking news detection and
tracking in twitter. In WI-IAT, pages 120–123, 2010.

[23] M. Quezada, V. Peña-Araya, and B. Poblete. Location-aware model
for news events in social media. In SIGIR, pages 935–938, 2015.

[24] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter
users: real-time event detection by social sensors. In WWW, pages
851–860, 2010.

[25] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling. Twitterstand: news in tweets. In GIS, pages 42–51, 2009.

[26] L. Shou, Z. Wang, K. Chen, and G. Chen. Sumblr: continuous
summarization of evolving tweet streams. In SIGIR, pages 533–542,
2013.

[27] K. Watanabe, M. Ochi, M. Okabe, and R. Onai. Jasmine: a real-time
local-event detection system based on geolocation information
propagated to microblogs. In CIKM, pages 2541–2544, 2011.

[28] J. Weng and B.-S. Lee. Event detection in twitter. In ICWSM, pages
401–408, 2011.

[29] C. Zhang, S. Jiang, Y. Chen, Y. Sun, and J. Han. Fast inbound top-k
query for random walk with restart. In ECML/PKDD, pages
608–624. 2015.

[30] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing:
Concepts, methodologies, and applications. ACM TIST,
5(3):38:1–38:55, 2014.

