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Abstract—Data cube is a cornerstone architecture in multidi-
mensional analysis of structured datasets. It is highly desirable
to conduct multidimensional analysis on text corpora with cube
structures for various text-intensive applications in healthcare,
business intelligence, and social media analysis. However, one
bottleneck to constructing text cube is to automatically put
millions of documents into the right cube cells so that quality
multidimensional analysis can be conducted afterwards—it is too
expensive to allocate documents manually or rely on massively
labeled data. We propose Doc2Cube, a method that constructs
a text cube from a given text corpus in an unsupervised way.
Initially, only the label names (e.g., USA, China) of each dimen-
sion (e.g., location) are provided instead of any labeled data.
Doc2Cube leverages label names as weak supervision signals
and iteratively performs joint embedding of labels, terms, and
documents to uncover their semantic similarities. To generate
joint embeddings that are discriminative for cube construction,
Doc2Cube learns dimension-tailored document representations
by selectively focusing on terms that are highly label-indicative in
each dimension. Furthermore, Doc2Cube alleviates label sparsity
by propagating the information from label names to other terms
and enriching the labeled term set. Our experiments on real data
demonstrate the superiority of Doc2Cube over existing methods.

Index Terms—data cube, text classification, multidimensional
analysis

I. INTRODUCTION

Text cube is a multidimensional data structure with text
documents residing in, where the dimensions correspond to
multiple aspects (e.g., topic, time, location) of the corpus.
Text cube analysis has been demonstrated as a powerful
text analytics tool for a wide spectrum of applications in
bioinformatics, healthcare, and business intelligence. For ex-
ample, by organizing a news corpus into a three-dimensional
topic-time-location cube, decision makers can easily browse
the corpus and retrieve desired articles with simple queries
(e.g., (Sports, 2017, USA)). Any text mining primitives, e.g.,
sentiment analysis, can be further applied on the retrieved
data for gaining useful insights. As another example, one can
organize a corpus of biomedical research papers into a neat
cube structure based on different facets (e.g., disease, gene,
protein). Such a text cube allows people to easily identify
relevant papers in biomedical research and acquire useful
information for disease treatment.

IThe first two authors have equal contributions.
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Fig. 1: Text cube construction on a news corpus with three dimen-
sions: topic, location and time. Each document needs to be assigned
with one label in each of the three dimensions.

Text cube construction, i.e., which automatically constructs
a text cube from a text corpus, has remained largely over-
looked. Specifically, given a text corpus D and a pre-defined
cube schema C, the task aims to allocate the documents in
D into the right cells in C. Figure 1 shows an example on
a news corpus. Let C be a pre-defined cube schema with
three dimensions: topic, location, and time. The text cube
construction task is to assign each news article in the given
corpus into a proper cube cell (e.g., (Sports, 2017, USA)), by
choosing one label along each dimension to best match the
textual content of the article.

Text cube construction is a multidimensional categorization
problem in nature and closely related to document classifica-
tion [1], [16], [17], [20]. However, the success of prevailing
document classification methods largely relies on sufficient
labeled document-label pairs to train reliable classifiers. For
text cube construction, it is costly to manually annotate a
large number of documents for classification, given that every
document has to be assigned with multiple labels.

We propose DOC2CUBE, a method that constructs text cube
from a given text corpus in an unsupervised way. Regarding
label names as a small set of labeled seed terms, DOC2CUBE
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Fig. 2: A toy example of dimension-aware joint embedding framework on the fopic dimension. In document focalization, the background
term (“report”) along with the indiscriminative words (“september” and “chinese”) are less emphasized for the fopic dimension. In label
expansion, more topic-indicative words (“football” and “stock”) are expanded and labeled.

first constructs a tripartite graph to encode the correlations

among labels, terms, and documents. It then iteratively refines

the graph structure and derives quality embeddings of labels,
terms, and documents to uncover their inter-type similarities.

During the iterative embedding process, DOC2CUBE features

two components to obtain discriminative joint embeddings:

document focalization and label expansion.

The document focalization component gradually sparsifies
the term-document sub-graph by emphasizing discriminative
terms. As shown in Figure 2, a document is initially connected
with all the terms appearing in it. The resultant document em-
bedding is over-represented in the sense that many terms indis-
criminative to the current dimension are encoded. DOC2CUBE
iteratively estimates the discriminativeness of terms for each
cube dimension. As such, one document can have multiple
representations—each tailored for one cube dimension by
highlighting truly discriminative information.

The label expansion component iteratively densifies the
label-term subgraph to address the label sparsity problem. As
shown in Figure 2, as each label is only connected to its surface
name in the beginning, the initial label embedding is under-
represented because many other relevant terms are overlooked.
To tackle this issue, DOC2CUBE computes the correlations
between labels and terms along different dimensions, and
iteratively links each label with positively correlated terms. In
this way, the information is propagated from label names to
other semantically relevant terms for alleviating label sparsity.

Our contributions can be summarized as follows:

1) We propose an unsupervised method for text cube con-
struction. It does not require any labeled data, but simply
leverages the surface names of different labels to achieve
effective text categorization.

2) We propose a novel dimension-aware joint embedding
algorithm. It learns dimension-aware embeddings by fo-
cusing on discriminative terms and propagating information
from label names to other terms to alleviate label sparsity.

3) We have performed extensive experiments using two real-
life datasets. The results show that our method significantly
outperforms state-of-the-art methods.

II. RELATED WORK

Lin et al. [11] were the first to propose the text cube concept.
They assumed the text documents have been organized in a
neat multidimensional structure and studied how to efficiently
compute different aggregation measures in the multidimen-
sional space. Since then, text cube analysis has drawn much
attention from the database and data mining communities [4],
[5], [14], [19], [21]. For example, R-Cube [14] was proposed
where users can specify an analysis portion by supplying some
keywords and a set of cells are extracted based on relevance.
TopCell was proposed [4] to support keyword-based ranking of
text cube cells and facilitate interactive exploration. However,
all these studies focus on the text analytics tasks, assuming
the cube is already constructed by data providers. The text
cube construction task, which aims at organizing massive text
documents into a cube, has remained largely overlooked.

Text cube construction is closely related to text categoriza-
tion. Prevailing text categorization methods take a supervised
approach. They learn reliable classifiers that are capable of
predicting the label of any new document, including SVM
[8], decision tree [1], [16], and neural networks [20]. Different
from supervised text classification, our problem does not have
any labeled data. Such a setting makes it challenging and
existing supervised methods inapplicable.

There have unsupervised or weakly-supervised approaches
for text categorization. Ko et al. [9] used heuristic rules
to generate training data, but the curated labels often need
considerable feature engineering efforts to ensure the quality.
OHLDA [3], [6] applies topic model with given labels to gen-
erate document classifiers, while leveraging external knowl-
edge from Wikipedia to represent labels. The recently devel-
oped dataless classification methods [17] also use Wikipedia
to perform explicit semantic analysis of labels and documents
to derive vector representations. The common limitation of
OHLDA and dataless models is their dependency on external
knowledge bases. They suffer from limited performance if
the given corpus is closed-domain or has limited coverage by
external knowledge bases.



III. PROBLEM DEFINITION

Given a text corpus D, the text cube for D is a multidi-
mensional data structure. Each document d € D lies in one
multidimensional cube cell to characterize the textual content
of the document from multiple aspects. Formally, we define
the concepts of text cube as follows:

Definition 1 (Text Cube): A text cube for a text corpus D

is a n-dimensional structure C = (L1, La, ..., L,), where L;
is the i-th cube dimension. Each document d € D resides in
a cube cell (I;,,...,{;,) in C, where [;, is the label of d in
dimension L;.
Problem: We study the problem of constructing a text cube
C from a text corpus D. Let C be a n-dimensional text cube
with dimensions L1, Lo, ..., L,, and D be a corpus of text
documents. For any document d € D, text cube construction
aims to allocate d into a n-dimensional cell in C. This is
equivalent to assigning n labels I, ...,l;, for d, where label
ly, € L; represents the category of d in dimension ;.

IV. AN OVERVIEW OF OUR METHOD

The major challenge for applying document classification
methods is that there are no labeled documents for training
reliable classifiers. Instead, one needs to perform document
categorization along different dimensions using only label
names and document content. Our method DOC2CUBE uses
label names to form a small set of seed labeled terms, and use
them as weak supervision signals for document categorization.

Graph Embedding. As shown in Figure 2, DOC2CUBE
initially constructs a tripartite label-term-document graph to
encode the relationships among labels, terms, and documents.
The correlation graph for a dimension £ is a tripartite graph
Grrp = (Virp, Errp). The node set Vi rp contains all the
labels in £, terms in 7, and documents in D. The edge set
E17rp consists of two types of edges: (1) E7y is a set of edges
between labels and terms. There is an edge between term ¢;
and label /; if and only if they strictly match each other, and
the weight w] " is set to 1; (2) Epp is a set of edges between
terms and documents. There is an edge between term ¢; and
document d; if ¢; occurs in d;, and the edge weight szjD is
set to log(1 + count(t;,d;)).

The graph Gprp encodes the information from seed terms
as well as the co-occurrence relationships between terms and
documents. Based on the constructed graph, we embed all
the labels, terms, and documents into a D-dimensional vector
space by applying existing graph embedding techniques [18].

Dimension-Aware Updating. While the initial embeddings
encode the seed information and the occurrences of terms
in documents, they suffer from two drawbacks: (1) the doc-
ument embeddings are over-represented in the sense that
many terms indiscriminative to the current dimension are
encoded; and (2) the label embeddings are under-represented
because many other relevant terms are overlooked. To ad-
dress the above challenges, DOC2CUBE features two novel
components for learning discriminative joint embeddings in
an iterative fashion: (1) the document focalization component

that emphasizes different terms for different dimensions, thus
deriving dimension-aware document representations; and (2)
the label expansion component that propagates information
from label names to other terms for alleviating label scarcity.
In the following section, we describe the details of these two
components.

V. LEARNING DIMENSION-AWARE EMBEDDINGS

In this section, we present the dimension-aware embedding
updating step. Taking the joint embeddings as initialization,
the updating step iteratively derives dimension-aware docu-
ment embeddings by focusing on discriminative terms for
each dimension, and expands the initial labeled seed terms
to address label sparsity.

A. Measuring Term Discriminativeness

The key to tackling over-representativeness of documents
and under-representativeness of labels is to estimate each
term’s discriminative power w.rt. a dimension and a label.
The computed discriminative scores can address document
over-representativeness by emphasizing discriminative terms
and understating indiscriminative ones; and meanwhile address
label under-representativeness by expanding each label to
highly relevant terms. In what follows, we define the label-
focal score and the dimension-focal score of a term t and
describe how we compute them.

1) Label-Focal Score: The label-focal score of a term ¢
w.rt. a label | in dimension £, denoted as f(¢,1), aims at
quantifying the discriminative power of the term ¢ for the
label {. The higher f(t,[) is, the more exclusively the term
t belongs to the label I. Our strategy for measuring the label-
focal score f(t,1) is to leverage the documents containing ¢ to
derive the distribution of term ¢ over all the labels in dimension
L. Specifically, with the document embedding matrix UP and
the label embedding matrix U*, we first compute the label-
document similarity matrix as:

R(™P%) = yPy~", (1)

In the above, R(P%) is a |D| x |£| matrix that gives the
similarities between documents and labels in the embedding
space. Combining it with the term-document subgraph, we are
able to further compute the similarities between labels and
terms. Specifically, let A(7P) be the adjacency matrix for the
term-document subgraph in G p, we compute the term-label
similarities as:

R(Tﬁ) — A(TD)R(DE)’ )
where R(7%) is a |T| x |£| matrix keeping the similarities
between terms and labels. Base on R(74), we apply row-wise
softmax function to derive the probability distribution of each
term over the labels. Finally, we define the label-focal score
f(ti,1;) as the probability of assigning term ¢; to label I;.
Namely,

fltil) =R, 3)



2) Dimension-Focal Score: We proceed to define the
dimension-focal score of a term. The dimension-focal score
of a term ¢; w.r.t. dimension £, denoted as f(¢;, L), aims to
quantify how discriminative the term ¢; is for the categoriza-
tion task along dimension £. The higher f(t;, L) is, the more
useful term ¢; is for deciding the label in dimension L.

We measure the dimension-focal score f(t;, L) based on
the distribution of term ¢; over all the labels in dimension L.
Recall that the matrix R(7T4) gives the label distribution of
term t;. We compute its normalized KL-divergence from the
uniform distribution of ¢; over all the labels as the dimension-
focal score. Formally, the dimension-focal score f(t;,L) is
given by:

TL TL
Zj:o,...,|L|Rz(‘j )1og\£\R( )

_ ij

where log |£] is a normalization term.

B. Document Focalization

The document focalization component uses the dimension-
focal scores of terms to address the over-represented prob-
lem of document embeddings. To obtain dimension-tailored
document embeddings, we use the dimension-focal scores to
re-weigh the term-document matrix A(7P), and compute the
weighted average of term embeddings. Formally, we update
the document embedding matrix U? as:

T
UP = (Am” o [f.c~-~f/;} ) o
IT1xID|

where o is the Hadamard product between two matrices; and
fr is a length-|7| vector representing the dimension-focal
scores of all the terms along dimension L. In this formula,
the dimension-focal score of each term places a penalty
in the range of [0,1] on the original weight in the matrix
A(TP)_ The document embedding is then an aggregation of
term embeddings with penalized weights. The higher a term’s
dimension-focal score is, the more it is emphasized when
computing the document embedding.

C. Label Expansion

The label expansion component is designed to solve the
under-represented problem of label embeddings, by linking
each label with other positively correlated terms. To ensure the
quality of the expanded terms, we consider two factors: (1) the
label-focal score of a term; and (2) the popularity of a term.
The label-focal score is critical to determining the correlations
between a term and the considered label. However, we observe
that only using the label-focal score could link the label to
many low-quality terms during the label expansion process.
This is because many terms that have high discriminative
power are infrequent in the corpus. Expanding labels to them
not only covers few extra documents, but also suffers from
their inadequately-trained embeddings. Hence, we design the
expansion criterion by combining the label-focal score and the

term popularity. Given a term ¢; and a label /;, we compute
the expansion score of term ¢; for label I; as:

log 1+ df (¢;)

(6)

where df (¢;) is the document frequency of term ¢;. The
second term thus reflects the normalized popularity of term
t;. In Equation 6, n > 0 is a pre-defined threshold for label
expansion. Any term-label pairs with the expansion scores
higher than 7 are connected and the adjacency matrix A(£7)
is updated accordingly. After the expansion, we compute the
label embedding as:

U* = ACTYT. (7)

Since the label expansion process changes label embed-
dings, the label-focal scores of terms will be updated according
to the newly computed R(P%) and R(7T4). As label-focal
scores are updated, a new label expansion operation could
further benefit generating high-quality label embeddings.

D. The Overall Algorithm

Algorithm 1 presents the iterative embedding updating
process for document and label embeddings. Starting with
the initial embeddings for labels (U%), terms (U7), and
documents (UP), we iteratively perform document focalization
and label expansion to obtain more discriminative dimension-
aware embeddings. In the document focalization component
(lines 2 - 5), we compute the dimension-focal scores of terms,
and update the document embeddings according to Equation
5; while in the label expansion component (lines 6 - 8), we
compute the label-focal scores of terms, and update the label
embeddings according to Equation 7. Finally, we assign the
max-scoring label to each document for the target dimension.
The label assignment step is achieved by directly measuring
the cosine similarity between label embedding and document
embedding.

VI. EXPERIMENTS

A. Experimental Setup

1) Dataset: We use two datasets in our experiments: (1)
The first dataset, named NYT, is a collection of New York
Times articles. We crawled 13,080 articles using New York
Time API in 2015. The articles in the corpus cover 29 topics
and 5 countries, and each article contains exactly one topic
label and one country label. (2) Our second dataset, Yelp, is a
collection of business reviews from the Yelp Data Challenge
with two dimensions for each review: business category and
created location. Due to the long-tail nature of the raw dataset,
we preprocess it by selecting the five most popular categories
and states to form the label spaces, and choose the reviews
falling in those top five categories and states.



Algorithm 1: Dimension-Aware Embedding Updating.

Input: U, UP, U”: initial embeddings of labels, docs and
terms.
A7) the adjacency matrix for the label-term subgraph
AUTD): the adjacency matrix for the term-document
subgraph.
T': the number of iterations for updating
Output: The updated embeddings of labels and documents.
1 for iter = 1:T do
// Document focalization
2 Compute R4 by Equation 1 and 2;
3 for ¢; in T do

o | =2

// Update document embeddings

T
ITIx|D|

// Label expansion

6 Compute e(t,!) for all term-label pairs by Equation 6;
7 Update A7) for all e(t, ) > n;

// Update label embeddings

s | Uf=AFTUT

TL TL
:0,---,|[,\R'5j )log\£|R5j )
log ||

2) Baselines: We compare DOC2CUBE with multiple base-
lines that can perform document categorization in an unsuper-
vised or semi-supervised way: (1) IR [15] treats each label
as a keyword query and performs categorization based on the
BM25 retrieval model. (2) IR + Expansion (IR+QE) extends
the IR method by expanding label names using Word2Vec [13]
and using the expanded term set as queries. (3) Word2vec
(W2V) [13] first learns vector representations for all the
terms in a given corpus, and then derives label and document
representations by aggregating their member terms. Finally,
the most similar label for a document is assigned based on
cosine similarity. (4) Word2vec + Focalization (W2V+DF)
extends W2V with document focalization. Instead of simply
aggregating term embeddings, it leverages term dimension-
focal scores to compute document representations. (5) Para-
graph2vec (P2V) [10] directly learns vector representations of
documents, by embedding documents and terms into the same
semantic space. (6) Semi-Supervised Topic Model (SEMI-
TM) [12] extends PLSA [7] by using labels as guidance and
forcing the learned topics to align with the provided labels. (7)
Dataless Classification (DATALESS) [2] is an unsupervised
algorithm that utilizes Wikipedia as external knowledge base.
It leverages Wikipedia and Explicit Semantic Analysis (ESA)
to derive vector representations of labels and documents. (8)
PTE [18] is a semi-supervised method that jointly embeds
documents, terms, and labels into the same latent space and
directly uses the embeddings for categorization.

Besides the above baseline methods, we also design two ab-
lation algorithms of DOC2CUBE: (1) D2C-DF is an ablation
without the label expansion component; (2) D2C-LE is an
ablation without document focalization.

We set the parameters of different methods as follows.
There are three major parameters in DOC2CUBE: (1) the latent

embedding dimension Dj; (2) the number of iterations for
embedding updating T'; and (3) the correlation threshold for
label expansion 7. After tuning, we set these parameters as the
following on both datasetes: D = 100,7 = 3 and np = 0.8.
For baselines, we set the embedding dimensions for W2V and
PTE to 100 to ensure fair comparison with DOC2CUBE; we
set the number of topics to 20 for SEMI-TM; and we set the
number of Wikipedia concepts to 500 for DATALESS.

B. Performance Comparison

Table I reports the micro-F1 and macro-F1 scores of all
the methods along different dimensions. One can observe that
DoC2CUBE outperforms all the baselines in both dimensions
on NYT and Yelp. Specifically, SEMI-TM is the strongest
baseline along the topic and location dimensions on NYT.
However, DOC2CUBE outperforms SEMI-TM by more than
16.2% in the topic dimension and 37.3% in the location dimen-
sion. On the Yelp dataset, DOC2CUBE again outperforms the
strongest baseline (W2V+DF and SEMI-TM) by 22.4% and
4.5% along the business category and the location dimensions,
respectively.

Comparing with the two ablations, we can observe the
benefits of document focalization and label expansion. For
example, on the NYT dataset, the inclusion of document
focalization (D2C-DF v.s. PTE) improves the micro-F1 score
from ~0.69 to ~0.78 in the topic dimension; and the in-
clusion of label expansion (D2C-LE v.s. PTE) improves
the micro-F1 score from ~0.69 to ~0.73. Interestingly, by
applying document focalization (W2V+DF) and label ex-
pansion (IR+QE) on baseline methods, we also observed
considerable performance gains along different dimensions.
Such a phenomenon further demonstrates the effectiveness of
document focalization and label expansion.

C. Case Study

We first examine the computed dimension-focal scores of
different terms on the NYT dataset. For this purpose, we pick
five terms in the vocabulary and show their dimension-focal
scores in the topic and location dimensions in Table II. From
the results, we can see that: (1) The first two terms, “economic
growth” and “soccer”, both have very high focal scores in the
topic dimension but low scores in the location dimension. This
is intuitive as these two terms are quite topic-indicative but do
not naturally reflect the location of a given article. (2) The
terms “beijing” and ‘“new york state” are only discriminative
for the location dimension. (3) There are also terms that have
high focal scores in both the topic and location dimensions,
such as “chinese consumer”. It makes sense as one can easily
tell the topics and locations of news articles from such terms.

We proceed to demonstrate the empirical results of the label
expansion component in Table III. Starting from the surface
name of a label, DOC2CUBE is capable of discovering other
terms that are highly correlated with the label. For example,
for the label “movies” in the topic dimension, DOC2CUBE it-
eratively discovers correlated terms such as “films”, “director”,
and “hollywood”.



TABLE I: The performance of different methods on the NYT and Yelp datasets. For each dimension, we measure the micro-F1

and macro-F1 scores of different methods for categorization.

NYT Yelp
Topic Location Business Category Location

Micro-F1 Macro-F1 Micro-F1 Macro-F1 ~ Micro-F1 Macro-F1 Micro-F1 ~ Macro-F1
IR 0.3963 0.4520 0.4615 0.517 0.2957 0.3669 0.0547 0.3111
IR+QE 0.4112 0.4744 0.4722 0.4726 0.3276 0.3726 0.0779 0.2806
Ww2v 0.5928 0.3891 0.5226 0.3598 0.4980 0.4635 0.1915 0.2530
W2V+DF 0.6100 0.3981 0.5446 0.4156 0.5129 0.5257 0.2392 0.2532
P2V 0.6079 0.4018 0.3337 0.3511 0.1920 0.3752 0.1766 0.2421
DATALESS 0.5882 0.3724 0.5 0.4362 0.1463 0.1733 0.1080 0.1981
SEMI-TM 0.6845 0.5407 0.5704 0.4588 0.2105 0.1876 0.3645 0.1990
PTE 0.6938 0.4992 0.595 0.4695 0.4459 0.4387 0.2505 0.2465
D2C-DF 0.7863 0.5235 0.6208 0.5635 0.6059 0.5707 0.3508 0.3010
D2C-LE 0.7347 0.5081 0.6619 0.5415 0.5261 0.5164 0.2939 0.2894
DoC2CUBE 0.7957 0.5414 0.6828 0.5986 0.6279 0.6037 0.3811 0.3165

TABLE 1II: The dimension-focal scores of different terms in REFERENCES

the topic and location dimension on NYT.

Topic  Location
economic growth ~ 0.972  0.223
soccer 0.883  0.096
beijing 0.245  0.681
new york state 0.166  0.788
chinese consumer  0.999  0.994

TABLE III: The label expansion results for four example labels
in the topic and location dimensions on the NYT dataset.

Round | Topic
Seed movies baseball tennis business
#1 films inning wimbleldon company
#2 director hits french open  chief executive
#3 hollywood pitch grand slam industry
Round | Location
Seed ‘ brazil Australia China Spain
#1 brazilian sydney chinese madrid
#2 san paulo australian shanghai barcelona
#3 confederations cup ~ melbourne beijing la liga
VII. CONCLUSION

We proposed a novel method that automatically constructs
a text cube from a text corpus to facilitate multidimensional
text analytics. Our proposed method, DOC2CUBE, requires
only the label names for document allocation. It leverages
label names as weak supervision signals and iteratively per-
forms joint embedding of labels, terms, and documents to
uncover their semantic similarities. Our experiments validate
the effectiveness of DOC2CUBE and its advantages over a
comprehensive set of baseline methods.
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