
State-Sharing Sparse Hidden Markov Models
for Personalized Sequences

Hongzhi Shi
1
, Chao Zhang

2
, Quanming Yao

3∗
, Yong Li

1
, Funing Sun

4
, Depeng Jin

1

1
Beijing National Research Center for Information Science and Technology (BNRist),

Department of Electronic Engineering, Tsinghua University, Beijing, China.

2
College of Computing, Georgia Institute of Technology, Atlanta, Georgia, USA

3
4Paradigm Inc., Beijing, China;

4
Tencent Inc., Beijing, China

liyong07@tsinghua.edu.cn

ABSTRACT
Hidden Markov Model (HMM) is a powerful tool that has been

widely adopted in sequence modeling tasks, such as mobility anal-

ysis, healthcare informatics, and online recommendation. How-

ever, using HMM for modeling personalized sequences remains

a challenging problem: training a unified HMM with all the se-

quences often fails to uncover interesting personalized patterns;

yet training one HMM for each individual inevitably suffers from

data scarcity.We address this challenge by proposing a state-sharing

sparse hidden Markov model (S3HMM) that can uncover personal-

ized sequential patterns without suffering from data scarcity. This is

achieved by two design principles: (1) all the HMMs in the ensemble

share the same set of latent states; and (2) each HMM has its own

transition matrix to model the personalized transitions. The result

optimization problem for S3HMM becomes nontrivial, because of

its two-layer hidden state design and the non-convexity in parame-

ter estimation. We design a new Expectation-Maximization algo-

rithm based, which treats the difference of convex programming

as a sub-solver to optimize the non-convex function in the M-step

with convergence guarantee. Our experimental results show that,

S3HMM can successfully uncover personalized sequential patterns

in various applications and outperforms baselines significantly in

downstream prediction tasks.

CCS CONCEPTS
• Computing methodologies→ Latent variable models.

KEYWORDS
Sequence modeling, hidden Markov model, parameter sharing,

sparse estimation.

ACM Reference Format:
Hongzhi Shi, Chao Zhang, Quanming Yao, Yong Li, Funing Sun, Depeng

Jin. 2019.State-Sharing Sparse Hidden Markov Models for Personalized

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330828

Figure 1: An example of user mobility modeling with
S3HMM.All users share the same set of latent states but have
personalized transitions.

Sequences. In The 25th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining (KDD’19), August 4–8, 2019, Anchorage, AK, USA. ACM, NY,

NY, USA, 9 pages. https://doi.org/10.1145/3292500.3330828

1 INTRODUCTION
Personalized sequences are ubiquitous in our daily life, and model-

ing such sequences is of great importance to various applications.

For example, in ride-sharing and transportation systems, model-

ing users’ trajectory sequences can help understand their mobility

and improve the effectiveness of the system [16, 18, 25]; in online

recommender systems, uncovering the sequential regularities be-

hind people’s behaviors is critical to sequential recommendation

in the online setting[4]; for targeted advertising, it is important to

analyze users’ historical purchasing behaviors for more effective

personalized advertising strategies [8]. In all these scenarios, an

important characteristic of the sequential modeling task is that the

sequential patterns are highly personalized. Different users can have
totally different transition regularities; there is thus a natural need

of uncovering personalized sequential regularities for task support

and decision making.

Hidden Markov Model (HMM) has long been considered as

one of the most important models for sequence modeling tasks

[9, 11, 15, 19, 25]. Compared with other sequential models such as

conditional random fields and recurrent neural networks, HMMs

can not only be learned in a totally unsupervised way, but also

provides nice interpretability by virtue of its hidden states and

https://doi.org/10.1145/3292500.3330828

Figure 2: The two-layer and sparse hidden state design of
S3HMM. The shared latent states (middle part) have distri-
butions over the observations and are shared by all the users.
Each user has a few personal latent states (top part), which
distribute over the shared latent states with the sparsity con-
straint.

transitional matrix. Nevertheless, using HMMs for modeling per-

sonalized sequences oftentimes faces a key challenge caused by the

contradiction between data scarcity and data inconsistency. On one

hand, if we train one HMM for each user for personalization, the

data are often too scarce to train a reliable model. On the other hand,

if we train one HMM for all users, the unified model often fails to

reveal interesting personalized patterns because of the conflicting

sequential behaviors of different users. Such a dilemma caused by

data scarcity and inconsistency remains a critical challenge that

has not been solved.

In order to address the above challenge, we propose an extension

of HMM. Our model, named state-sharing sparse hidden Markov

model (S3HMM), can uncover personalized sequential patterns

without suffering from data scarcity. At the high level, S3HMM

learns an ensemble of HMMs from the personalized sequences. The

design of S3HMM is based on the following principles: (1) all HMMs

in the ensemble share the same static set of latent states to avoid

suffering from data scarcity; and (2) each HMM maintains its own

transition matrix—which is sparse and small—to model personal-

ized transitions. We use Figure 1 to illustrate S3HMM. It shows

a mobility modeling task with multiple personalized trajectories.

When applying our S3HMM model to such personalized trajecto-

ries, the model maintains a personalized transition matrix to reflect

the personalized transitions by respecting data inconsistency, but

enforces all the users to share the same pool of latent hotspots to

learn the hidden states reliably under data scarcity.

We highlight two key features of the model design of S3HMM:

two-layer state-sharing and sparsity. (1) Two-layer state-sharing.
Straightforwardly, maintaining personalized transition matrix re-

quiresM2
parameters for each user, whereM is the number of the

shared latent states. Such a model design clearly incurs too many

parameters and makes the learning procedure intractable because

of data scarcity. To tackle this challenge, we introduce a two-layer

hidden state design in S3HMM. As shown in Figure 2, given the

actual observations (bottom part), the layer of shared hidden states

(middle part) emit probabilities over the observations and are shared

by all the users; and the personalized layer (top part) contains a

small number of personal hidden states for each user. Each user

transits among a few personal states, which leads to much smaller

transition matrices and largely reduces the number of parameters.

(2) Sparsity. Furthermore, when modeling the distributions of per-

sonal states over shared states, we introduce entropy-regularized

distributions. The entropy regularization enforces each top-layer

state to attend to a few shared states, which further induces sparsity

and make the personal states more interpretable.

Optimizing S3HMM becomes nontrivial because of the two-layer

hidden state design and the inclusion of the entropy regularization

term. As the classic Baum Welch algorithm [1] can no longer be

applied here, we propose a new Expectation-Maximization (EM)

procedure for the optimization problem. The key challenge in the

EM procedure is the sub-problem in the M-step does not have a

closed-form solution and becomes non-convex. We thus design a

Difference of Convex Programming (DCP) [17, 24], which is guar-

anteed to converge. Theoretically, we prove the convergence of our

optimization algorithm and analyze its computational complexity.

We summarize our contributions as below:

• We propose a novel state-sharing sparse hidden Markov model

for modeling personalized sequences. S3HMM not only over-

comes data scarcity but also captures the diversity of personal-

ized sequential patterns. Meanwhile, it is highly interpretable by

virtue of the sparsity constraint.

• To optimize S3HMM, we design a new EM algorithm which

includes DCP as a sub-solver for the M-step. We prove the con-

vergence of our optimization algorithm and analyze its time and

space complexity.

• We conduct extensive experiments on the datasets from differ-

ent domains to demonstrate the generality, effectiveness and

efficiency of our model. The experiment results show that our

model can successfully reveal personalized sequential patterns,

and meanwhile outperforms state-of-the-art models by large

margins in downstream prediction tasks.

2 PROBLEM FORMULATION
Given a user behavior sequence S = r1r2 · · · rN , the n-th record of

user behavior is defined as a tuple rn =<un , tn , en>, where un is

the user id, tn is the time stamp and en is the user behaviour. In

the record, en can be either continuous or discrete observations.

For the former, en is represented as a continuous feature vector,

e.g., a two-dimensional vector denoting the user’s location in the

mobility modeling scenario. For the latter, en is a discrete one-hot

feature vector, e.g., a one-hot feature vector representing the artist

identifier in a music recommender service.

Now given a set of user behavior sequences, the personalized

sequence modeling problem aims to understanding the underlying

regularities behind each user’s behaviors: (1) what are the latent

states underlying user’s sequential behaviors? (2) how does the

user sequentially transit between those latent states?

3 MODEL DESCRIPTION
3.1 Hidden Markov Model
We begin with introducing the classical hidden Markov model

(HMM)[14] to help better understand our proposed model. An

HMM assumes all the observations in a sequence are governed by

a number of latent states, and the transitions among those latent

states follow the Markovian assumption, i.e., the visiting proba-

bility of next state only depends on the current state. Formally,

lettingM be the number of latent states, then there are three sets

of parameters in the classical HMM:

• A M-dimensional vector π ∈ RM
, where πm = p(z = m)

defines the initial probability of visiting them-th latent state.

• A M × M matrix A = {ai j } ∈ RM×M
, which defines the

transition probabilities betweenM hidden states following

the Markovian assumption. The probability of moving from

the i-th state to the j-th state is given by the entry ai j , namely

ai j = p(zn = j |zn−1 = i).
• A set of parameters D = {dm }, m = 1, 2, · · ·M defining

the distributions of latent states over observations, each

parameter subset dm defines a distribution (e.g., Gaussian or

multinomial) of them-th latent state over the observations.

3.2 Design Philosophy of S3HMM
As aforementioned, using the classical HMM for modeling personal-

ized sequences often faces the dilemma caused by data scarcity and

data inconsistency. In our S3HMM model, we address this dilemma

by requiring different users to share the same pool of latent states

but maintain their personalized transitions among these states.

Such a design philosophy aligns well with most practical sequence

modeling scenarios: different users have different initial distribu-

tions over the latent states (π) and transition matrices (A) because

of their personalized preferences; but their behavior observations

are in the same space and often governed by a fixed set of latent

states in that space (e.g, a set of hotspots in a city, or a set of music

genres).

A straightforward idea to realize the above philosophy is that,

we can train individual πu and Au
for each user and a shared pa-

rameter set D for all the users. However, the number M of latent

states can be potentially large (hundreds or thousands), such a

straightforward design inevitably leads to a O(M2) transition ma-

trix for each user. To deal with this challenge, our key observation

is that each user usually correlates with a small number instead

of all the latent states. This observation motivates a two-layer and

sparse hidden state design of S3HMM, as shown in Figure 2. First,

in addition toM shared latent states (the middle layer) that governs

concrete observations, we include a layer of abstract latent states

that are personalized. Namely, each user maintains a small number

K of personalized latent states (the top layer) that correlates the

user with a few shared latent states. Since K is significantly smaller

thanM (K ≪ M), we reduce the number of personalized parame-

ters from O(M2) to to O(KM). Second, we add a sparsity-induced

regularization on the distribution of personalized latent states over

the shared latent states. Specifically, we impose an entropy-based

sparsity constraint to force each personalized state only emits to a

few shared hidden states. Such a sparsity regularization not only

facilitates learning the personalized parameters under data scarcity,

but also makes the result transition patterns more interpretable.

3.3 The S3HMMModel
We are now ready to mathematically formulate our S3HMM model.

For all users, we define a set ofM shared latent states, which gov-

ern the concrete observations. A set of distribution parameters

D = {dm } define the emission from theM latent states to concrete

observations. Namely, each parameter subset dm defines a parame-

terized distribution of them-th latent states over the observations.

Here, we consider two types of emission distributions: (1) Gaussian

distribution: dm = {µ,Σ}, where µ ∈ R2
and Σ ∈ R2×2

. For exam-

ple, we can use Gaussian to model shared hotspots for locations

sequences; (2) multinomial distribution: dm = {θh } ∈ RH
, where

H is the number of items. For example, we can use multinomial

distributions to model music genres for music listening sequences.

The underlying distributions are formed and shared by all users,

such as a shopping mall or a residential area for the first case and

the types of music for the second case.

We proceed to describe personalized latent states. As shown in

Figure 2, for each observed sequence S = e1e2 · · · eN (the bottom

layer), we define two levels of latent states: (1) C = c1c2 · · · cN
denote the latent states shared by all the users, which governs

distributions over the observations; and (2) Z = z1z2 · · · zN denote

the personal latent states, which governs a few shared latent states

that correlate with the user. As such, for each user u, we have three
sets of personalized parameters Φu = {πu ,Au ,Bu }:

• A K-dimensional vector πu , where πui = p(z1 = i), which defines

the initial distribution over personal hidden states;

• A matrix Au = {aui j } ∈ RK×K
, which defines the transition

probabilities among K personal hidden states with aui j = p(zn =

j |zn−1 = i);
• A matrix Bu = {buim } ∈ RK×M

, which defines the emission

probabilities from i-th personal hidden state to them-th shared

hidden state with buim = p(cn =m |zn = i).

Taking mobility modeling to exemplify the above model design,

the parameters πu
and Au

describe how user u distributes and

transits among her abstract personal states (e.g., dining, working,

shopping); while Bu describes how her personal states distribute

over the shared hotspots in the physical world (e.g., shopping malls,

restaurants, work places). Note that, the number of personal states

is usually small, but the number of shared hotspots can be large.

When modeling the distribution of the personal states Z over the
shared latent states C, we impose the sparsity constraint. This is

based on the assumption that a user’s abstract state usually maps to

a small number of shared states. We use entropy-induced sparsity

constraints on {buim } for m = 1, · · · ,M , which can measure the

diversification of the distribution and encourage the personal states

to focus on a few shared states. Formally, we add entropy terms for

Bu and define the overall objective function as follows:

max

Φ,D
L(Φ,D) =

log likelihood︷ ︸︸ ︷∑
u

∑
S∈Ju

log(p(S|Φu,D))+

sparsity constraint︷ ︸︸ ︷∑
u

λд(Bu) , (1)

where S is a sequence of observations e , Ju is the set of user u’s
behavior sequences and λ ≥ 0 is the coefficient of the sparsity

constraint, and

д(Bu) =
∑
i,m

buim log

(
buim

)
, (2)

p(S|Φu,D) =
∑
Z,C

p(S|C,D) · p(C|Z,Bu) · p(Z|πu ,Au), (3)

where

∑
Z,C means

∑K
z1=1

∑K
z2=1

· · ·
∑K
zN =1

∑M
c1=1

∑M
c2=1

· · ·
∑M
cN =1

.

To summarize, our model contains the user-specific parameters

Φu = {πu ,Au ,Bu } and a set of shared underlying distributions’ pa-
rameters D = {dm }, of which the optimization process is described

in the Section 4.

4 OPTIMIZATION
The Baum Welch algorithm [1] is commonly used for learning

the parameters of a standard HMM. However, this algorithm is

inapplicable to S3HMM, because of the two-layer hidden layer

design and the sparsity regularization on Bu in Equation (1). In this

section, we develop an Expectation-Maximization procedure for

learning the parameters of S3HMM.

4.1 The Expectation-Maximization Framework
In our developed EM optimization procedure, we first use latent

variables Z and C to find a lower bound of the objective function

based on Jensen’s inequality [12], and then alternatively optimize

the lower bound to update the model parameters and find a new

lower bound until convergence.

The following lemma first establishes a lower bound for the

original objective function L (Φ,D). Due to the space limit, we

leave all proofs for Lemmas and Propositions in Appendix A.

Lemma 4.1. Let p̄ (Z,C) = p
(
Z,C|S,Φu

old ,Dold

)
, then, for (1) it

is given by: L (Φ,D) ≥ L′
1
(Φ,D) − L′

2
where

L′
1
(Φ,D) =

∑
u

©«
∑
S∈Ju

∑
Z,C

p̄ (Z,C) logp(S,Z,C|Φu,D) + λд(Bu)ª®¬ ,
L′

2
=

∑
u

∑
S∈Ju

∑
Z,C

p̄ (Z,C) log p̄ (Z,C) ,

where L′
2
is a constant, which is independent w.r.t. Φ and D.

Based on the above lower bound for the objective function, Al-

gorithm 1 sketches the EM algorithm for learning the parameters

of S3HMM. We alternate between the two steps: (1) E-step (step 3):

calculating the posterior probability p̄ (Z,C) for all sequences of
all users; (2) M-step (step 4): updating the parameters Φ by maxi-

mizing the lower bound. We will shortly detail how we update the

parameters in the M-step (Algorithm 2) in Section 4.2.

In the E-step, we define three auxiliary variables, i.e., ξn (i, j) =
p(zn+1 = j, zn = i |S,Φ,D) where n = 1, 2...,N − 1, γn (i) = p(zn =
i |S,Φ,D) and ρn (i,m) = p(zn = i, cn = m |S,Φ,D) where n =
1, 2...,N . Then, p̄(Z,C) can be estimated using above three auxiliary

variables. In the M-step, using ξn (i, j), γn (i) and ρn (i,m) to replace

Algorithm 1 Expectation Maximization for learning
S3HMM.

Require: Ju for all u: the set of trajectories of all users u;
1: initialize {πu }, {Au }, {Bu } and D, set threshold ∆L > 0;

2: while true do
3: E-step: update p̄(Z,C);
4: M-step: update {πu }, {Au } and D based on L′

1
separately,

{Bu } based on L′
1
using Algorithm 2;

5: if L(Φ,D) − L(Φold,Dold) < ∆L then
6: break;

7: end if
8: end while
9: return model parameters {πu }, {Au }, {Bu } and D.

p̄ (Z,C), L′
1
(Φ,D) becomes:

L′
1
(Φ,D) =

∑
u,i

∑
S∈Ju

γ1(i) logπui (4)

+
∑
u,i, j

∑
S∈Ju

N−1∑
n=1

ξn (i, j) logaui j (5)

+
∑
u,i,m

©«
∑
S∈Ju

N∑
n=1

ρn (i,m) logbuim + λb
u
im log

(
buim

)ª®¬ (6)

+
∑
u,i,m

∑
S∈Ju

N∑
n=1

ρn (i,m) logp (en |dm). (7)

Then, we maximize L′
1
(Φ,D|Z,C) by finding the optimal Φ and

D. We split L′
1
(Φ,D|Z,C) into four terms in (4)-(7) which are the

functions of {πu }, {Au }, {Bu } and D, respectively. Since L′
1
w.r.t.

{πu }, {Au }, D are concave without any other additional terms, we

can obtain estimation equations which are similar to traditional

Baum Welch algorithm [1]. We find that only the estimation of

{Bu } is influenced by the sparsity term. Furthermore, in Section 4.2,

we will show the optimization problem w.r.t. {Bu } is not always
concave, which is significantly different from the traditional EM

algorithm, requiring non-convex optimization techniques in M-step.

Overall, we report the process of the our designed algorithm in

Algorithm 1, of which the details are described in Appendix B.

4.2 DCP for Optimizing w.r.t. {Bu }

For simplicity, let ρ̄m =
∑
S∈Ju

∑N
n=1

ρn (i,m), bm = buim and

b = {bm }. Following the tradition of optimization, the problem

of finding b for each i and u, i.e., (6), can be transformed into such

a minimization problem from a maximization problem:

min

b
˘f (b) + ˆf (b), s.t.

∑
m

bm = 1, (8)

where

˘f (b) = −
∑
m

ρ̄m logbm , ˆf (b) = −λ
∑
m

bm logbm ,

ρ̄m has been estimated in E-step, and λ > 0 is predefined as the

sparsity coefficient.

Proposition 4.2. There exists λ > 0 such that the (8) is a non-
convex optimization problem.

To optimize such a non-convex function of b with a convergence

guarantee, we use difference of convex programming (DCP) [17, 24],

which is motivated by Lemma 4.3.

Lemma 4.3. Equation (8) can be decomposed into the addition of a
convex term ˘f and a concave term ˆf .

DCP is a general and powerful framework for solving non-convex

problems, which has been successfully applied in many applica-

tions, e.g., learning sparse vectors [21] and low-rank matrices [22].

According to DCP, we need to minimize a sequence of convex upper

bound f (t+1)(b) by linearizing the concave term locally, i.e.,

f (t+1)(b)= ˘f (b)+(b−b(t))⊤∇ ˆf (b(t)), s.t.
∑
m

bm = 1. (9)

How to solve (9) efficiently is the key for achieving fast speed of

DCP. To meet this goal, we transform (9) into a one-dimensional

problem in Proposition 4.4 below.

Proposition 4.4. There exists an η such that:∑
m

−ρ̄m/λ(logb
(t)
m + 1 − η) = 1, (10)

and the optimal solution for (9) can be obtained from η by b∗m =

−ρ̄m/λ(logb
(t)
m + 1 − η) form = 1, · · · ,M .

Equation (10) is a simple one-dimensional programming problem,

which can be efficiently solved, e.g., using bisection method. The

whole DCP for solving (8) is summarized in Algorithm 2.

Algorithm 2 DCP for solving (8).

1: initialize b(1);
2: for t = 1, · · · ,T do
3: transform (9) into (10) with current b(t);
4: obtain b(t+1)

by using bisection method solving (10);

5: end for
6: return b(T);

5 THEORETICAL ANALYSIS
Complexity Analysis.We now analyze the time and space com-

plexities of our proposed model. There are several parameters that

determine the computational complexity of our model: the number

of top-layer hidden states K for each user, the number of middle-

layer hidden states M for all users, and the sum of all sequences

lengths L. The time complexity for one iteration in Algorithm 1

is then O
(
(K2 + KM)L

)
, which is approximately O (KML) due to

K ≪ M . For the space complexity, all the variables involved in

Algorithm 1 have to be stored. Among them, ξn (i, j) and ρn (i,m)

are the dominating variables that determine the space complexity.

The space complexity is then given by O
(
(K2 + KM)L

)
, which is

approximately O (KML). Table 1 summarizes the space and time

complexity of our model and two main existing models.

Convergence Analysis. There are two significant differences be-

tween our optimization algorithm and the traditional EM algorithm

for HMM training. First, our objective function (1) is not just a log

likelihood but with an additional entropy term. To tackle this issue,

we utilize the Jensen’s inequality [12] to derive the lower bound.

Table 1: The time and space complexity of our model and
two previous models. For Gmove [25], G is the number of
user groups, and I is the number of total iterations for the
HMM training in the inner loop.

Method Time / iteration Space

HMM [6] O
(
M2L

)
O

(
M2L

)
Gmove [25] O

(
GM2LI

)
O

(
GM2LI

)
S3HMM O (KML) O (KML)

Second, as optimizing the lower bound w.r.t. {Bu } is a non-convex
in theM-step, we use DCP in the inner loop and use {Buold } as initial
points to ensure the lower bound is non-decreasing. We prove that

such treatments guarantee the convergence of our optimization

procedure.

Theorem 5.1. The objective value L (Φ,D) produced by Algo-
rithm 1 is non-decreasing, and converges to a limit point.

Proof. First, we prove that the overall objective function is

non-decreasing during the iterations. We use h(π), h(A), h(B), h(D)

to denote the four terms (4)-(7), respectively. Because h(π), h(A)

and h(D) are convex, we can easily get the global maximum and

we have h(π) ≥ h(πold), h(A) ≥ h(Aold) and h(D) ≥ h(Dold).

However, h(B) is non-convex, to avoid that converge to another

local maximum, we use Bold as the initial point to iterate by DCP.

Since DCP has convergence guarantee[17, 24], we have h(B) ≥

h(Bold). Based on Lemma 4.1 and above analysis, we get:

L (Φ,D) ≥h(π) + h(A) + h(B) + h(D) + L′
2

≥h(πold) + h(Aold) + h(Bold) + h(Dold) + L
′
2

=L (Φold ,Dold) .

Thus, the sequence of L (Φ,D) is non-decreasing.

Then, to prove that L(Φ,D) is limited, we only need to prove

that all (2) and (3) have upper bounds. Since (2) is the opposite of

entropy, (2) is no more than 0. The specific form of (3) is given by,

p(S|Φu ,D) =
∑
Z,C

πuz1

·

N−1∏
n=1

auzn,zn+1

·

N∏
n=1

buzn,cn ·

N∏
n=1

p(en |dcn)

Since all four types of terms, πuz1

, auzn,zn+1

, buzn,cn and p(en |dcn),
are limited, after a limited number of addition and multiplication

operations on these terms, the resultp(S|Φu ,D) is still limited. Thus,

the overall objective function L(Φ,D) is also limited. □

6 EVALUATION
6.1 Experiments Setup
6.1.1 Datasets. We evaluate our model with three datasets from

different domains. The details of the three datasets are described as

follows:

Twitter: This is a public dataset [25] collected on Twitter from
Aug. 1st to Nov. 30th, 2014 in Los Angeles, which consists million-

scale geo-tagged tweets. We extract the effective transitions such

that the time gap is less than 6 hours. After preprocessing, there

are approximately 8 thousand users and 30 thousand effective tran-

sitions. We use this dataset for personalized mobility modeling and

location prediction.

Wechat: This is a dense trajectory dataset [7] collected from

about 5 thousand active Wechat users from Sept. 17th to Oct. 31st,

2016. Being collected on Wechat’s map platform, each trajectory

is sampled at a five-minute rate and reflects the user’s real-life

mobility in the physical world. After preprocessing, we obtain 0.16

million clean transitions. We again use this dense trajectory dataset

for personalized mobility modeling and location prediction.

Lastfm : This is a public dataset collected from Last.FM [2]

from Jan. 1st to Apr. 1st, 2008, which consists 1 thousand users’

music listening records. Different from the previous datasets, the

observations in this dataset is discrete one-hot feature vectors. Af-

ter preprocessing, there are approximately 30 thousand effective

transitions. We use this dataset for modeling personalized music lis-

tening behaviors. For quantitative evaluation, we use the prediction

of next artist the user will listen to as the evaluation task.

6.1.2 ComparedMethods. We compare S3HMMwith the following

baselines:

• HMM [6] is the classical HMM that trains one unified HMM

for all the sequences. The result HMM is used for sequential

prediction for all the users.

• Gmove [25] is a group-level hidden Markov model. It jointly

clusters users into groups and learns an HMM for each user

group. At prediction time, it softly infers the group member-

ship of the target users and aggregates the predictions from

the user’s belonging groups.

• Pipeline [11] is a simple baseline for learning personalized

sequential models. It first clusters all the observations to

form high-level states. Then for each user, it selects K states

that correlate with the user’s observations most and infers a

transition matrix for the selected K states. In our implemen-

tation, we use k-means to cluster the observations (either

user locations or one-hot feature vectors).

Note that our baselines are the classic HMM and its variants.

While there are othermodels (e.g., recurrent neural networks [7, 20])

designed specifically for location prediction and sequential recom-

mendation on our datasets, we do not compare with them, because

we do not claim S3HMM will achieve state-of-the-art performance

on these specific tasks. Rather, we consider S3HMM as a general-to-

use HMM variant that can better uncover personalized sequential

patterns and improve downstream prediction tasks. In addition to

the above baselines, we also study several variants of our S3HMM

model to verify its components:

• S3HMM-∞ is variant of S3HMM that has hard assignment

of personal states over shared states. When inferring the

distributions personal states over shared states, it chooses

the shared state that has the largest probability and sets its

probability entry to 1. It is equivalent to our model when

λ → +∞.

• S3HMM-0: It is also a special case of our proposed model

when λ = 0. In other words, this model imposes no sparsity

constraints.

• S3HMM-λ: It is our proposed S3HMM model in which λ
is the parameter controlling the strength of the sparsity

constraint.

There are three important parameters in S3HMM: (1) the number

of shared latent statesM , (2) the number of personal latent states K ,
and (3) the strength of the sparsity constraint λ. By default, we set

K = 5 for all dataset,M = 500 forWechat and Lastfm andM = 1000

for Twitter, and λ = 50. We study the effects of these parameters

later in Section 6.6. The parameters of baseline methods are tuned

to achieve the best performance using a validation dataset.

6.2 Qualitative Studies
In this subsection, we investigate the learned S3HMMmodel qualita-

tively to verify its effectiveness in learning personalized sequential

models. Below, we first show how S3HMM learns state-sharing and

sparse personalized models, then perform a set of case studies to

examine these personalized models. Due to the space limit, we only

show the results on theWechat dataset, but similar phenomena are

also observed on Twitter and Music.

State-sharing and sparse properties of S3HMM.We train S3HMM

onWechat and analyze the learnedmodel to verify our state-sharing

and sparse model design. Figure 3 shows three sets of qualitative

analysis of our model.

We first analyze whether the underlying latent states are indeed

shared by different users. For this purpose, we count the number of

the users that distribute on each underlying state with probability

more than 1/M . Figure 3(a) shows the histogram of the underlying

states w.r.t. the number of users sharing a common state. As shown,

we observe that more than 99% underlying states are shared by at

least 10 users, and most underlying states are shared by 10 − 70

users. This verifies S3HMM can effectively uncover the shared

latent states. It is because of such parameter sharing that allows

S3HMM to jointly learn with all the user sequences to address data

scarcity.

We then examine whether different users have diverse transition

patterns. Starting from the same underlying state, we compute the

next state that users are most likely to visit based on their transition

matrices. Figure 3(b) plots the histogram of the number of the states

that users may visit. As shown, with the same starting state, the

users can have totally different transition patterns: there are often

10−60 possibilities that different users may visit. This phenomenon

shows the necessity of learning personalized transitions and the

effectiveness of S3HMM in doing this.

Finally, we examine whether S3HMM produces sparse models

for different users. This is done by counting how many underlying

shared states each user distributes on. Figure 3(c) shows the results.

We can see the number of shared states that each user focuses on is

mostly no more than 10, which verifies effectiveness of the sparsity

constraint of S3HMM.

Case Study.We proceed to study the personalized sequential mod-

els learned for two different users in theWechat dataset. Figure 4
plots their shared latent states and transition patterns (i.g., the tran-

sition matrix A). Note that, each axis in the heatmap should be

the index of the top-layer hidden state, because we add sparsity

constraint, each top-layer state mainly focuses on one middle-layer

hidden state. For the ease of visualization, we index the axis in the

heatmap with middle-layer hidden states, thus each entry in the

heatmap has direct physical mapping to the hotspots in the left

figure.

(a) #Users. (b) #Predicted Next States. (c) #Shared States.

Figure 3: Analysis of the learned S3HMM model learned
from the Wechat dataset: (a) most underlying states are
shared by at least ten users; (b) different users have differ-
ent transition patterns and may visit a diverse set of next
states from the same starting state; (c) each user focuses on
only a small number of latent states.

One can see from Figure 4 that S3HMM successfully captures

different transition patterns for different users and the transitions

makes sense intuitively. For user A, there are five highly correlated

states: a residential area (Huilongguan), a university (Peking Uni-

versity), a tech park (Zhongguancun), a bus station (Sihui) and a

remote village. She is likely to move from her university to the

tech part, and from the tech park to her residential area. This is

possibly because she is a university student interning at the tech

park. User B’s transition patterns are simpler: she is routinely com-

muting between her home and the working place. Finally, we see

that these two users share common underlying states (e.g., the tech

park) but have totally different transition patterns, which verifies

the effectiveness of S3HMM. In contrast, if we train one unified

HMM for the users, such data conflicts will make the result model

hard to interpret and less effective for predictive tasks.

6.3 Performance Comparison
In this subsection, we evaluate the performance of S3HMM for

sequential prediction tasks. Given a user sequence S = e1e2 · · · eN ,

the task aims at predicting eN based on its preceding sequence

e1e2 · · · eN−1. To evaluate the performance of different sequential

models, we check whether the ground truth eN appears in the

top-k rank list generated by a sequential model. We compute the

accuracy as k varies. On theWechat and Twitter datasets, we predict
the next location a user is likely to visit following the setup in [25];

on the Lastfm dataset, we predict the artist the user is likely to

listen to given her preceding music listening behaviors. For all the

sequences, we use first 70% for training, the subsequent 20% for

validation, and the rest for testing.

6.3.1 Performance Comparison. Figure 5 shows the sequential

prediction performance of different models on the three datasets.

As shown, S3HMM consistently outperforms all the baselines on

the datasets: (1) On the Twitter dataset, S3HMM outperforms the

strongest baseline Gmove by large margins, improving the absolute

accuracy by up to 20%; (2) On the Wechat dataset, Pipeline is the
best-performing baseline, yet S3HMM improves its absolute accu-

racy by 19.5%, 30.4%, 34.6%, 36.3%, 36.6% as k varies; (3) Similar

significant improvements can be observed on the Lastfm dataset as

well, where S3HMM outperforms the baselines by more than 20%

in absolute accuracy.

Comparing the performance of different variants of S3HMM

(S3HMM-λ, S3HMM-0, and S3HMM–∞), we can see S3HMM-λ is

consistently the best. This empirically verifies that imposing the

sparsity constraint can improve the performance of the model,

probably because it serves as a regularization term that better learn

the model under data scarcity. In contrast, S3HMM–∞ is too rigid

and suffers from accuracy loss, while S3HMM-0 does not enjoy the

benefits of sparsity regularization. A side benefit of the sparsity

constraint is that it makes the result model easily interpretable, as

shown in Section 6.2.

6.3.2 Performance on Different Users Groups. In this set of ex-

periments, we study the performance of our model on different

user groups with the Wechat dataset. We partition all the users

into different groups based on three criteria and study how the

performance of S3HMM varies: (1) the number of transitions for

training; (2) the total number of visited places; (3) the entropy of

user trajectory[5]. Investigating the performance on different user

groups can help understand the robustness of the model. Figure 6

shows the performance of our model and the classic HMM. Across

all the different user groups, our method stably outperforms HMM
with more than 10% improvements in absolute accuracy.

6.4 Convergence
In this set of experiments, we verify that our method converges

empirically. Figure 7 shows the convergence plots on the three

datasets. We can observe that on all the three datasets, the objective

function L(Φ,D) monotonously increases and gradually converges

after a small number of iterations.

6.5 Running time comparison
Table 2 reports the training time of different models on the three

datasets. As expected, the classical HMM is the fastest in terms

of its training time, but comes with the cost of poor predictive

accuracy. The running time of S3HMM-∞, S3HMM-0 and S3HMM-λ
are similar, and are all much faster than the Gmove model.

Table 2: Time costs of different models.

Methods HMM Gmove Pipeline S3HMM-∞ S3HMM-0 S3HMM-λ

Twitter 90s 3758s 578s 2615s 2383s 2398s

Wechat 293s 17757s 2122s 16253s 9424s 9450s

Lastfm 474s 39039s 2366s 36489s 34290s 34258s

6.6 Effects of parameters
In this subsection, we study the effects of different parameters on

the performance of S3HMM. There are three key parameters: (1)

the number of shared hidden statesM , (2) the number of personal

states K , and (3) the strength of sparsity λ. For each parameter, we

study the performance of our model when that parameter varies,

while the other two parameters are fixed at their default values.

Due to the space limit, we only report the results about parameters

on theWechat dataset.
Effect ofM . Figure 8(a) shows the effect of M on the performance

of S3HMM. We observe that whenM is small, the performance of

S3HMM improves significantly withM and then gradually becomes

stable. This is expected, as more shared states provide finer gran-

ularity in characterizing the observation space, but such an effect

Figure 4: Case study for two users on the Wechat dataset: we show the shared underlying latent states with red circles in the
left, and show the transition patterns of the two users in the right heat map (darker color represents higher probability).

(a) Twitter. (b) Wechat. (c) Lastfm.

Figure 5: The accuracies of top-k prediction of different sequential models.

(a) #Transitions. (b) #Different Places. (c) Trajectory Entropy.

Figure 6: Prediction accuracies of different user groups.

(a) Twitter. (b) Wechat. (c) Lastfm.

Figure 7: The convergence in terms of L(Φ,D) for S3HMM-λ.

gradually saturates whenM is large enough. Figure 9(a) shows the

running time of S3HMM, from which we can see S3HMM scales

linearly withM .

Effect ofK . Figure 8(b) shows the effectiveness of S3HMMwhenK
varies. The performance of S3HMM is rather stable when K varies

from 2 to 7. This indicates that two personal states is often enough

to capture the transition patterns for most Wechat users. Figure 9(b)

(a) Accuracy w.r.t. M . (b) Accuracy w.r.t. K . (c) Accuracy w.r.t. λ.

Figure 8: Top-1 prediction accuracy when varying different
parameters.

(a) Runtime w.r.t. M . (b) Runtime w.r.t. K . (c) Runtime w.r.t. λ.

Figure 9: Time cost when varying different parameters.

shows the training time of S3HMM as K increases. Similar to M ,

S3HMM scales linearly with K .
Effect of λ. Figure 8(c) shows the effect of λ on the performance

of S3HMM. When λ < 1, there is little change in the prediction

accuracy as we vary λ. However, when λ > 1, the accuracy first

increase before it reaches its maximum at the point of λ = 50,

then deteriorates after λ > 50. From Figure 9(c), we can observe

that the running time slightly increases with λ. This is because a

larger λ requires more iterations in the DCP procedure for sparse

estimation.

7 RELATEDWORK
Hidden Markov model (HMM) is a powerful model for modeling

sequences because it can both discover the intrinsic underlying dis-

tributions and learn the transition patterns among the distributions

[9, 11, 15, 19, 25]. However, most existing studies on HMMs for se-

quence modeling focus on learning one HMM for a long sequence

or a collection of sequences, thus not able to learn personalized

HMMs. Gmove [25] learns “semi-personalized” HMMs from a col-

lection of user sequences. It jointly performs user clustering and

group-level HMM training, thus clustering users with similar tran-

sition patterns into the same group and learning an HMM for that

group. However, such a group-level HMM training is still too rigid

for obtaining user-level personalized models. SSHMM [19] learns

an HMM with one-layer hidden states sharing underlying distribu-

tions, which partly solves the problem of data scarcity. However, its

structure of one-layer hidden state leads to a very large transition

matrix for each user and lack of interpretability of personalized

states. In contrast, in our S3HMM model, we design a two-layer

hidden state model, allowing for fully capturing individual-level

patterns without suffering from data scarcity with high efficiency

and interpretability.

Sequential pattern mining methods have been studied exten-

sively [3, 13] , aiming to discover frequent sub-sequences from a

sequence database. While our model also discovers sequential pat-

terns from input sequences, we adopt a statistical approach rather

than rule-based pattern mining. Furthermore, none of these pattern

mining methods can uncover personalized sequential patterns.

Recurrent neural networks have been popular in recent studies

for various sequential prediction tasks, such as location prediction

[7, 10] and basket recommendation [23]. Our work is orthogonal

to them, as our model aims at descriptive modeling instead of

predictive modeling. Instead of designing an optimized model for a

specific prediction task, we aim to develop a general-purpose tool

for uncovering personalized sequential patterns. Our developed

model is general-to-use for various sequence modeling tasks and is

highly interpretable.

8 CONCLUSION
We proposed an extension of hidden Markov model for modeling

personalized sequences. Our model S3HMM addressed the chal-

lenge of learning personalized hidden Markov models under severe

data scarcity. This is achieved by assuming a pool of latent states

shared by all the users, but meanwhile allow users to maintain a

small number of personal latent states. The personal states distrib-

ute over the shared states with sparsity constraints, thus allowing

for learning reliable personal models with limited data. We have

developed a new optimization algorithm for estimating the pa-

rameters of the model and proved its convergence theoretically.

Through experiments on three real-life datasets, we found S3HMM

can successfully uncover personalized and interpretable sequen-

tial patterns, and significantly outperforms baseline models for

downstream predictive tasks. S3HMM can serve as a general-to-

use model for modeling personalized sequential behaviors under

data scarcity in various domains. An interesting future work is to

extend the idea of S3HMM to deep neural networks, for building

personalized predictive models under data scarcity.

ACKNOWLEDGMENTS
This work was supported in part by the National Nature Science

Foundation of China under 61861136003, 61621091 and 61673237,

Beijing National Research Center for Information Science and Tech-

nology under 20031887521, and research fund of Tsinghua Univer-

sity - Tencent Joint Laboratory for Internet Innovation Technology.

REFERENCES
[1] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. 1970. A maxi-

mization technique occurring in the statistical analysis of probabilistic functions

of Markov chains. The annals of mathematical statistics (1970).
[2] Òscar Celma Herrada. 2009. Music recommendation and discovery in the long

tail. (2009).

[3] Meng Chen, Xiaohui Yu, and Yang Liu. 2015. Mining moving patterns for pre-

dicting next location. Information Systems (2015).
[4] Zhiyong Cheng, Jialie Shen, Lei Zhu, Mohan S Kankanhalli, and Liqiang Nie.

2017. Exploiting Music Play Sequence for Music Recommendation.. In IJCAI.
[5] Justin Cranshaw, Eran Toch, Jason Hong, Aniket Kittur, and Norman Sadeh.

2010. Bridging the gap between physical location and online social networks. In

Ubicomp.
[6] Budhaditya Deb and Prithwish Basu. 2015. Discovering latent semantic structure

in human mobility traces. In EWSN.
[7] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng

Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent

Networks. In WWW.

[8] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,

Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in your inbox:

Product recommendations at scale. In KDD.
[9] Tao Li, Minsoo Choi, Kaiming Fu, and Lei Lin. 2018. Music sequence prediction

with mixture hidden markov models. arXiv preprint arXiv:1809.00842 (2018).
[10] Dongliang Liao, Weiqing Liu, Yuan Zhong, Jing Li, and Guowei Wang. 2018. Pre-

dicting Activity and Location with Multi-task Context Aware Recurrent Neural

Network. In IJCAI.
[11] Wesley Mathew, Ruben Raposo, and Bruno Martins. 2012. Predicting future

locations with hidden Markov models. In Ubicomp.
[12] Thomas Minka. 1998. Expectation-Maximization as lower bound maximization.

[13] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009.

Wherenext: a location predictor on trajectory pattern mining. In KDD.
[14] Nasser M Nasrabadi. 2007. Pattern recognition and machine learning. Journal of

electronic imaging 16, 4 (2007), 049901.

[15] Hongzhi Shi, Hancheng Cao, Xiangxin Zhou, Yong Li, Chao Zhang, Vassilis

Kostakos, Funing Sun, and Fanchao Meng. 2019. Semantics-Aware Hidden

Markov Model for Human Mobility. In SDM.

[16] Hongzhi Shi and Yong Li. 2018. Discovering Periodic Patterns for Large Scale

Mobile Traffic Data: Method and Applications. IEEE Transactions on Mobile
Computing 17, 10 (2018), 2266–2278.

[17] Pham Dinh Tao et al. 2005. The DC (difference of convex functions) program-

ming and DCA revisited with DC models of real world nonconvex optimization

problems. Annals of operations research (2005).

[18] Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to Estimate the Travel Time.

In KDD.
[19] Tong Xia, Yue Yu, Fengli Xu, Funing Sun, Diansheng Guo, and Yong Li. 2019.

Understanding Urban Dynamics by State-sharing Hidden Markov Model. In

WWW.

[20] Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. 2017. SERM: A recurrent

model for next location prediction in semantic trajectories. In CIKM.

[21] Quanming Yao and James T Kwok. 2017. Efficient learning with a family of

nonconvex regularizers by redistributing nonconvexity. Journal of Machine
Learning Research (2017).

[22] Quanming Yao, James T Kwok, Taifeng Wang, and Tie-Yan Liu. 2018. Large-Scale

Low-Rank Matrix Learning with Nonconvex Regularizers. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2018).

[23] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A dynamic

recurrent model for next basket recommendation. In SIGIR.
[24] Alan L Yuille and Anand Rangarajan. 2003. The concave-convex procedure.

Neural computation (2003).

[25] Chao Zhang, Keyang Zhang, Quan Yuan, Luming Zhang, Tim Hanratty, and

Jiawei Han. 2016. Gmove: Group-level mobility modeling using geo-tagged social

media. In KDD.

A PROOF
A.1 Lemma 4.1

Proof. By utilizing latent variables Z and C, we find a lower

bound of the first term in L(Φ,D), i.e., (1) based on Jensen’s inequal-

ity [12]. For simplicity, let p̄ (Z,C) = p
(
Z,C|S,Φu

old ,Dold

)
, then

we have: ∑
u

∑
S∈Ju

log

(
p(S|Φu ,D)

)
=

∑
u

∑
S∈Ju

log

©«
∑
Z,C

p(S,Z,C|Φu ,D)
ª®¬

=
∑
u

∑
S∈Ju

log

©«
∑
Z,C

p̄ (Z,C)
p(S,Z,C|Φu ,D)

p̄ (Z,C)
ª®¬

≥
∑
u

∑
S∈Ju

∑
Z,C

p̄ (Z,C) log

p(S,Z,C|Φu ,D)

p̄ (Z,C)

=
∑
u

∑
S∈Ju

∑
Z,C

p̄ (Z,C) logp(S,Z,C|Φu ,D)

−
∑
u

∑
S∈Ju

∑
Z,C

p̄ (Z,C) log p̄ (Z,C).

Also, L(Φ,D) is defined as,

L(Φ,D) =
∑
u

∑
S∈Ju

log(p(S|Φu,D)) +
∑
u

λд(Bu).

Thus, L(Φ,D) can be given by: L (Φ,D) ≥ L′
1
(Φ,D) − L′

2
where

L′
1
(Φ,D) =

∑
u

©«
∑
S∈Ju

∑
Z,C

p̄ (Z,C) logp(S,Z,C|Φu,D) + λд(Bu)ª®¬ ,
L′

2
=

∑
u

∑
S∈Ju

∑
Z,C

p̄ (Z,C) log p̄ (Z,C) ,

where L′
2
is independent w.r.t. Φ and D. □

A.2 Proposition 4.2
Proof. The second-order derivative of f (b) w.r.t. b is given by,

f ′′(b) =

ρ̄1/b

2

1
− λ/b1 0 · · · 0

0 ρ̄2/b
2

2
− λ/b2 · · · 0

...
...

. . .
...

0 0 · · · ρ̄M /b2

M − λ/bM

.

We can observe that if there exists m such that λ > ρ̄m/bm , we

will obtain ρ̄m/b2

m − λ/bm < 0, i.e., the matrix is not positive semi-

definite. So the problem of minimizing f ′′(b) can be a non-convex

problem. □

A.3 Lemma 4.3
Proof. We can split the objective function of b into two terms

given by,

f (b) = ˘f (b) + ˆf (b),

where
˘f (b) = −

∑
m ρ̄m logbm and

ˆf (b) = −λ
∑
m bm logbm . The

second-order derivative of
˘f (b) w.r.t. b is given by,

˘f ′′(b) =

ρ̄1/b

2

1
0 · · · 0

0 ρ̄2/b
2

2
· · · 0

...
...

. . .
...

0 0 · · · ρ̄M /b2

M

.

We find that
˘f ′′(b) is a diagonal matrix. Since ρ̄m > 0 and bm > 0,

we can get ρ̄1/b
2

1
> 0 for m = 1, 2, · · · ,M , i.e., all the diagonal

entries are larger than 0. So
˘f ′′(b) is a positive definite matrix, and

˘f (b) is convex. Similarly, the second-order derivative of
ˆf (b) w.r.t.

b is given by,

ˆf ′′(b) =

−λ/b1 0 · · · 0

0 −λ/b2 · · · 0

...
...

. . .
...

0 0 · · · −λ/bM

.

Since the predefined coefficient λ > 0 and bm > 0 for m =

1, 2, · · · ,M , all the diagonal entries are less than 0. Thus,
ˆf ′′(b)

is negative definite, and
ˆf (b) is concave. □

A.4 Proposition 4.4
Proof. The convex upper bound to minimize is given by,

f (t+1)(b)= ˘f (b)+(b−b(t))⊤∇ ˆf (b(t))

= −
∑
m

ρ̄m logbm − λ
∑
m

bm (logb
(t)
m + 1)

s.t.

∑
m

bm = 1.

We utilized Lagrange multiplier to transform such a constrained

optimization problem into an unconstrained optimization problem

given by,

min

b,η
−

∑
m

ρ̄m logbm − λ
∑
m

bm (logb
(t)
m + 1) −η(

∑
m

bm − 1), (11)

By letting the derivative of the objective in (11) w.r.t. bm be zero,

we can obtain,

bm = −ρ̄m/λ(logb
(t)
m + 1 − η), (12)

form = 1, · · · ,M . We replace bm in

∑
m bm = 1 by (12) and obtain∑

m
−ρ̄m/λ(logb

(t)
m + 1 − η) = 1.

Therefore, we transform the M-dimensional problem into a one-

dimensional problem. Since ρ̄k > 0 and λ > 0, when η > logb
(t)
k +

1 for k = 1, 2, · · · ,M ,

∑
m −ρ̄m/λ(logb

(t)
m + 1 − η) monotonously

decreases with η. Since∑
m

−ρ̄m/λ(logb
(t)
m + 1 − η) <

∑
m

−ρ̄m/λ(log maxb
(t)
m + 1 − η) = 1,

we set the higher bound as,

η <
M∑

m=1

ρ̄m/λ + log(maxbm) + 1.

We denote that

mmax = arg max

m
bm ,

so that∑
m

−ρ̄m/λ(logb
(t)
m + 1 − η) > −ρ̄mmax /λ(logb

(t)
mmax + 1 − η) = 1.

We set the lower bound as

η > ρ̄mmax /λ + log(bmmax) + 1.

Thus, there is a unique solution in this interval. So, we can solve

the equation of η and then get b(t+1)
by bisection method. □

B THE DETAILED EM ALGORITHM
We alternatively conduct E-step and M-step until the objective

function L(Φ,D) converges as shown in algorithm 1. We introduce

how to estimate the posterior probabilities in E-step and how to

infer parameters in M-step in detail as follows.

B.1 E-Step
For each sequence S, we first define three auxiliary probabilities to

calculate:

ξn (i, j) = p(zn+1 = j, zn = i |S,Φu ,D),

where n = 1, 2, · · · ,N − 1, and

γn (i) = p(zn = i |S,Φu ,D),

ρn (i,m) = p(zn = i, cn =m |S,Φu ,D),

where n = 1, 2, · · · ,N . We use a forward-backward procedure to

calculate these three probabilities. The forward probability αn (i) is
defined as

αn (i) = p(e1, e2, · · · , en , zn = i |Φu ,D).

The initial values are

α1(i) = πi

M∑
m=1

buimp(e1 |dm).

Then αn+1(j) can be calculated as follows,

αn+1(j) =
K∑
i=1

(αn (i)a
u
i j

M∑
m=1

bjmp(en+1 |dm)).

The backward probability is defined as

βn (i) = p(en+1, en+2, · · · , eN |zn = i,Φu ,D).

The initial values are given by βN (i) = 1. Then, βn (i) can be calcu-

lated by βn+1(j)

βn (i) =
K∑
j=1

(
aui j

M∑
m=1

bujmp(en+1 |dm)

)
βn+1(j).

Based on αn (i) and βn (j), ξn (i, j) can be calculated as

ξn (i, j) =
αn (i)a

u
i j

(∑M
m=1

bujmp(en+1 |dm)

)
βn+1(j)∑K

k=1

∑K
l=1

αn (k)a
u
kl

(∑M
m=1

bujmp(en+1 |dm)

)
βn+1(l)

.

Finally, γn (i) and ρn (i,m) can be calculated as:

γn (i) =
αn (i)βn (i)∑K
j=1

αn (j)βn (j)
,

ρn (i,m) =
γn (i)b

u
imp(en+1 |dm)∑M

l=1
builp(en+1 |dl)

.

B.2 M-Step
Based on ξn (i, j),γn (i) and ρn (i,m), the parameters of HMM (except

for the parameters of the underlying distributions) can be updated

by the following formulas,

πui =
∑
S∈Ju

γ1(i),

aui j =

∑
S∈Ju

∑N−1

n=1
ξn (i, j)∑

S∈Ju
∑N−1

n=1
γn (i)

.

If there is no sparsity constraint (λ = 0), then we can calculate buim
as,

buim =

∑
S∈Ju

∑N
n=1

ρn (i,m)∑
S∈Ju

∑N
n=1

γn (i)
.

If the assignment is hard (λ → +∞), then buim can be calculated as

below,

buim =

{
1, ifm = arдmaxm′

∑
S∈Ju

∑N
n=1

ρn (i,m
′),

0, otherwise.

Otherwise, we need to conduct an non-convex optimization process

to estimate buim as described in Section 4.2.

The updating formulas of the parameters of the underlying dis-

tributions are divided into two cases as follows,

(1) For sequences with underlying Gaussian distributions, en is a

continuous vector (e.g., for location sequences, en = (lo , la), where
lo is the longitude and la is the latitude), the dm = {µm ,Σm } can

be estimated by:

µm =

∑
u ∈U

∑
S∈Ju

∑N
n=1

∑K
i=1

ρn (i,m)en∑M
m=1

∑
u ∈U

∑
S∈Ju

∑N
n=1

∑K
i=1

ρn (i,m)
,

Σm =
∑
u ∈U

∑
S∈Ju

∑N
n=1

∑K
i=1

ρn (i,m)(en − µm)(en − µm)T∑M
m=1

∑
u ∈U

∑
S∈Ju

∑N
n=1

∑K
i=1

ρn (i,m)
.

(2) For sequences with underlying multinomial distributions, en is

a one-hot vector, and dm = {θh } can be estimated by:

θm =

∑
u ∈U

∑
S∈Ju

∑N
n=1

∑K
i=1

ρn (i,m)en∑M
m=1

∑
u ∈U

∑
S∈Ju

∑N
n=1

∑K
i=1

ρn (i,m)
.

Specifically, for music listening sequences, en denotes the one-hot

vector identifying which artist the user listens to. When the training

process terminates, we obtain the parameters of the model.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Model Description
	3.1 Hidden Markov Model
	3.2 Design Philosophy of S3HMM
	3.3 The S3HMM Model

	4 Optimization
	4.1 The Expectation-Maximization Framework
	4.2 DCP for Optimizing w.r.t. { Bu }

	5 Theoretical Analysis
	6 Evaluation
	6.1 Experiments Setup
	6.2 Qualitative Studies
	6.3 Performance Comparison
	6.4 Convergence
	6.5 Running time comparison
	6.6 Effects of parameters

	7 RELATED WORK
	8 Conclusion
	Acknowledgments
	References
	A Proof
	A.1 Lemma 4.1
	A.2 Proposition 4.2
	A.3 Lemma 4.3
	A.4 Proposition 4.4

	B The Detailed EM Algorithm
	B.1 E-Step
	B.2 M-Step

