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Abstract

Active learning is an important technique for
low-resource sequence labeling tasks. How-
ever, current active sequence labeling methods
use the queried samples alone in each itera-
tion, which is an inefficient way of leverag-
ing human annotations. We propose a simple
but effective data augmentation method to im-
prove label efficiency of active sequence label-
ing. Our method, SeqMix, simply augments
the queried samples by generating extra la-
beled sequences in each iteration. The key dif-
ficulty is to generate plausible sequences along
with token-level labels. In SeqMix, we address
this challenge by performing mixup for both
sequences and token-level labels of the queried
samples. Furthermore, we design a discrim-
inator during sequence mixup, which judges
whether the generated sequences are plausi-
ble or not. Our experiments on Named Entity
Recognition and Event Detection tasks show
that SeqMix can improve the standard active
sequence labeling method by 2.27%–3.75% in
terms of F1 scores. The code and data for
SeqMix can be found at https://github.
com/rz-zhang/SeqMix.

1 Introduction

Many NLP tasks can be formulated as sequence
labeling problems, such as part-of-speech (POS)
tagging (Zheng et al., 2013), named entity recogni-
tion (NER) (Lample et al., 2016), and event extrac-
tion (Yang et al., 2019). Recently, neural sequential
models (Lample et al., 2016; Akbik et al., 2018;
Vaswani et al., 2017) have shown strong perfor-
mance for various sequence labeling task. How-
ever, these deep neural models are label hungry—
they require large amounts of annotated sequences
to achieve strong performance. Obtaining large
amounts of annotated data can be too expensive
for practical sequence labeling tasks, due to token-
level annotation efforts.

Active learning is an important technique for se-
quence labeling in low-resource settings. Active
sequence labeling is an iterative process. In each it-
eration, a fixed number of unlabeled sequences are
selected by a query policy for annotation and then
model updating, in hope of maximally improving
model performance. For example, Tomanek et al.
(2007); Shen et al. (2017) select query samples
based on data uncertainties; Hazra et al. (2019)
compute model-aware similarity to eliminate redun-
dant examples and improve the diversity of query
samples; and Fang et al. (2017); Liu et al. (2018)
use reinforcement learning to learn query policies.
However, existing methods for active sequence la-
beling all use the queried samples alone in each
iteration. We argue that the queried samples pro-
vide limited data diversity, and using them alone for
model updating is inefficient in terms of leveraging
human annotation efforts.

We study the problem of enhancing active se-
quence labeling via data augmentation. We aim
to generate augmented labeled sequences for the
queried samples in each iteration, thereby introduc-
ing more data diversity and improve model gener-
alization. However, data augmentation for active
sequence labeling is challenging, because we need
to generate sentences and token-level labels jointly.
Prevailing generative models (Zhang et al., 2016;
Bowman et al., 2016) are inapplicable because they
can only generate word sequences without labels.
It is also infeasible to apply heuristic data aug-
mentation methods such as context-based words
substitution (Kobayashi, 2018), synonym replace-
ment, random insertion, swap, and deletion (Wei
and Zou, 2019), paraphrasing (Cho et al., 2019)
or back translation (Xie et al., 2019), because la-
bel composition is complex for sequence labeling.
Directly using these techniques to manipulate to-
kens may inject incorrectly labeled sequences into
training data and harm model performance.

https://github.com/rz-zhang/SeqMix
https://github.com/rz-zhang/SeqMix


We propose SeqMix, a data augmentation
method for generating sub-sequences along with
their labels based on mixup (Zhang et al., 2018).
Under the active sequence labeling framework, Se-
qMix is capable of generating plausible pseudo
labeled sequences for the queried samples in each
iteration. This is enabled by two key techniques in
SeqMix: (1) First, in each iteration, it searches for
pairs of eligible sequences and mixes them both
in the feature space and the label space. (2) Sec-
ond, it has a discriminator to judge if the generated
sequence is plausible or not. The discriminator is
designed to compute the perplexity scores for all
the generated candidate sequences and select the
low-perplexity sequences as plausible ones.

We show that SeqMix consistently outper-
forms standard active sequence labeling base-
lines under different data usage percentiles
with experiments on Named Entity Recogni-
tion and Event Detection tasks. On average,
it achieves 2.95%, 2.27%, 3.75% F1 improve-
ments on the CoNLL-2003, ACE05 and WebPage
datasets. The advantage of SeqMix is especially
prominent in low-resource scenarios, achieving
12.06%, 8.86%, 16.49% F1 improvements to the
original active learning approach on the above
three datasets. Our results also verify the proposed
mixup strategies and the discriminator are vital to
the performance of SeqMix.

2 Preliminaries

2.1 Problem Definition

Many NLP problems can be formulated as se-
quence labeling problems. Given an input se-
quence, the task is to annotate it with token-level
labels. The labels often consist of a position pre-
fix provided by a labeling schema and a type in-
dicator provided by the specific task. For exam-
ple, in the named entity recognition task, we can
adopt the BIO (Beginning, Inside, Outside) tag-
ging scheme (Màrquez et al., 2005) to assign labels
for each token: the first token of an entity mention
with type X is labeled as B-X, the tokens inside
that mention are labeled as I-X and the non-entity
tokens are labeled as O.

Consider a large unlabeled corpus U , tradi-
tional active learning starts from a small anno-
tated seed set L, and utilizes a query function
ψ(U ,K, γ(·)) to obtain K most informative unla-
beled samples X = {x1, . . . ,xK} along with their
labels Y = {y1, · · · , yK}, where γ(·) is the query

policy. Then, we remove X from the unlabeled
data U and repeat the above procedure until the sat-
isfactory performance achieved or the annotation
capacity reached.

In SeqMix, we aim to further exploit the an-
notated set 〈X ,Y〉 to generate augmented data
〈X ∗,Y∗〉. Then the labeled dataset is expanded
as L = L ∪ 〈X ,Y〉 ∪ 〈X ∗,Y∗〉. Formally, we
define our task as: (1) construct a generator φ(·)
to implement sequence and label generation based
on the actively sampled data X and its label Y ,
(2) set a discriminator d(·) to yield the filtered
generation, then (3) augment the labeled set as
L = L ∪ 〈X ,Y〉 ∪ d(φ(X ,Y)).

2.2 Active Learning for Sequence Labeling

Active sequence labeling selects K most informa-
tive instances ψ (·,K, γ(·)) in each iteration, with
the hope of maximally improving model perfor-
mance with a fixed labeled budget. With the input
sequence x of length T , we denote the model out-
put as f (·|x; θ). Our method is generic to any
query policies γ(·). Below, we introduce several
representative policies.

Least Confidence (LC) Culotta and McCallum
(2005) measure the uncertainty of sequence models
by the most likely predicted sequence. For a CRF
model (Lafferty et al., 2001), we calculate γ with
the predicted sequential label y∗ as

γLC(x) = 1−max
y∗

(P (y∗|x; θ) , (1)

where y∗ is the Viterbi parse. For BERT (Devlin
et al., 2019) with a token classification head, we
adopt a variant of the least confidence measure:

γLC’(x) =
T∑
t=1

(1−max
yt

P (yt|x; θ)), (2)

where P (yt|x; θ) = softmax(f(yt|x; θ)).

Normalized Token Entropy (NTE) Another un-
certainty measure for the query policy is normal-
ized entropy (Settles and Craven, 2008), defined as:

γTE(x) = − 1

T

T∑
t=1

M∑
m=1

Pm(yt|x, θ) logPm(yt|x, θ),

(3)
where Pm(yt|x, θ) = [softmax(f(yt|x; θ))]m.



Disagreement Sampling Query-by-committee
(QBC) (Seung et al., 1992), is another approach for
specifying the policy, where the unlabeled data can
be sampled by the disagreement of the base models.
The disagreement can be defined in several ways,
here we take the vote entropy proposed by (Dagan
and Engelson, 1995). Given a committee consist
of C models, the vote entropy for input x is:

γVE(x) = − 1

T

T∑
t=1

M∑
m=1

Vm (yt)

C
log

Vm (yt)

C
,

(4)
where Vm(yt) is the number of models that predict
the t-th token xt as the label m.

3 The SeqMix Method

3.1 Overview
Given a corpus for sequence labeling, we assume
the dataset contains a small labeled set L and a
large unlabeled set U initially. We start from aug-
menting the seed set L with SeqMix. First, we
adopt a pairing function ζ(·) to find paired samples
by traversing L. Next, we generate mixed-labeled
sequences via latent space linear interpolation with
one of the approaches mentioned in Section 3.2.
To ensure the semantic quality of the generated se-
quences, we use a discriminator d(·) to measure
the perplexity of them and filter low-quality se-
quences out. Then we generate the extra labeled se-
quences L∗ = SeqMix(L, α, ζ(·), d(·)) and get the
augmented training set L = L ∪ L∗. The sequence
labeling model θ is initialized on this augmented
training set L.

After that, the iterative active learning proce-
dure begins. In each iteration, we actively se-
lect instances from U with a query policy γ(·)
(Section 2.2) to obtain the top K samples X =
ψ(U ,K, γ(·)). The newly selected samples will be
labeled with Y , and the batch of samples 〈X ,Y〉
will be used for SeqMix. Again, we generate
L∗ = SeqMix(〈X ,Y〉 , α, ζ(·), d(·)) and expand
the training set as L = L ∪ L∗. Then we train
the model θ on the newly augmented set L. The
iterative active learning procedure terminates when
a fixed number of iterations are reached. We sum-
marize the above procedure in Algorithm 1.

3.2 Sequence Mixup in the Embedding Space
Mixup (Zhang et al., 2018) is a data augmentation
method that implements linear interpolation in the
input space. Given two input samples xi, xj along

Algorithm 1 The procedure of active sequence la-
beling augmentation via SeqMix
Input: Labeled seed set L; Unlabeled set U ;
Query function ψ(·,K, γ(·)); The sequence label-
ing model θ; Beta distribution parameter α; Pairing
function ζ(·); Discriminator function d(·).
// seed set augmentation

L∗ = SeqMix(L, α, ζ(·), d(·))
L = L ∪ L∗

// model initialization
θ = train (θ,L)

// active learning iterations with augmentation
for round in active learning rounds do
X = ψ(U ,K, γ(·))
U = U − X
Annotate X to get 〈X ,Y〉
L∗ = SeqMix(〈X ,Y〉 , α, ζ(·), d(·))
L = L ∪ 〈X ,Y〉 ∪ L∗
θ = train (θ,L)

end
Output: The sequence model trained with active
data augmentation: θ

with the labels yi, yj , the mixing process is:

x̃ = λxi + (1− λ)xj , (5)

ỹ = λyi + (1− λ)yj , (6)

where λ ∼ Beta(α, α) is the mixing coefficient.
Through linear combinations on the input level of
paired examples and their labels, Mixup regularizes
the model to present linear behavior among the
training data.

Mixup is not directly applicable to generate in-
terpolated samples for text data, because the in-
put space is discrete. To overcome this, SeqMix
performs token-level interpolation in the embed-
ding space and selects a token closest to the in-
terpolated embedding. Specifically, SeqMix con-
structs a table of tokensW and their corresponding
contextual embeddings E1. Given two sequences
xi = {w1

i , · · · ,wT
i } and xj = {w1

j , · · · ,wT
j }

with their embedding representations exi
=

{e1i , · · · , eTi } and exj
= {e1j , · · · , eTj }, the t-th

mixed token is the token whose embedding et is
closest to the mixed embedding:

et = argmin
e∈E

∥∥e− (λeti + (1− λ)etj )
∥∥
2
. (7)

1The construction of {W, E} are discussed in Appendix.



To get the corresponding wt, we can query the
table {W, E} using et. The label generation is
straightforward. For two label sequences yi =
{y1

i , · · · ,yTi } and yj = {y1
j , · · · ,yTj }, we get the

t-th mixed label as:

yt = λyti + (1− λ)ytj , (8)

where yti and ytj are one-hot encoded labels.
Along with the above sequence mixup procedure,

we also introduce a pairing strategy that selects se-
quences for mixup. The reason is that, in many
sequence labeling tasks, the labels of interest are
scarce. For example, in the NER and event detec-
tion tasks, the “O” label is dominant in the corpus,
which do not refer to any entities or events of in-
terest. We thus define the labels of interest as valid
labels, e.g., the non-“O” labels in NER and event
detection, and design a sequence pairing function
to select more informative parent sequences for
mixup. Specifically, the sequence pairing function
ζ(·) is designed according to valid label density.
For a sequence, its valid label density is defined
as η = n

s , where n is the number of valid labels
and s is the length of the sub-sequence. We set
a threshold η0 for ζ(·), and the sequence will be
considered as an eligible candidate for mixup only
when η ≥ η0.

Based on the above token-level mixup proce-
dure and the sequence pairing function, we propose
three different strategies for generating interpolated
labeled sequences. These strategies are shown in
Figure 1 and described below:

Whole-sequence mixup As the name suggests,
whole-sequence mixup (Figure 1(a)) performs se-
quence mixing at the whole-sequence level. Given
two sequences 〈xi,yi〉 , 〈xj,yj〉 ∈ L, they must
share the same length without counting padding
words. Besides, the paring function ζ(·) requires
that both the two sequences satisfy η ≥ η0. Then
we perform mixup at all token positions, by em-
ploying Equation 7 to generate mixed tokens and
Equation 8 to generate mixed labels (note that the
mixed labels are soft labels).

Sub-sequence mixup One drawback of the
whole-sequence mixup is that it indiscriminately
mixes over all tokens, which may include incom-
patible subsequences and generate implausible se-
quences. To tackle this, we consider sub-sequence
mixup (Figure 1(b)) to mix sub-sequences of
the parent sequences. It scans the original sam-
ples with a window of fixed-length s to look for

Algorithm 2 The generation procedure of SeqMix
Input: Labeled set L = 〈X ,Y〉; Beta distribution
parameter α; Pairing function ζ(·); Discriminator
function d(·); Number of expected generation N .
for 〈xi,yi〉 , 〈xj,yj〉 , (i 6= j) in L do

if ζ(〈xi,yi〉 , 〈xj,yj〉) then
λ ∼ Beta(α, α)
// mixup the target sub-sequences
for t = 1, · · · , T do

Calculate et by Eq. (7);
Get corresponding token wt for et;
Calculate yt by Eq. (8).

end
x̃sub = {w1, · · · ,wT }
ỹsub = {y1, · · · ,yT }
// replace the original sequences
for k in {i, j} do

x̃k = xk − xksub + x̃sub
ỹk = yk − yksub + ỹsub
if d(x̃k) then
L∗ = L∗ ∪ 〈x̃k, ỹk〉

end
if |L∗| ≥ N then

break
end

end
end

end
Output: Generated sequences and labels L∗

paired sub-sequences. Denote the sub-sequences
of 〈xi,yi〉 , 〈xj,yj〉 as Xisub =

{
x1
isub, . . . ,x

s
isub

}
,

Xjsub =
{
x1
jsub, . . . ,x

s
jsub

}
. If ∃ xisub ∈ Xisub,

xjsub ∈ Xjsub, such that their η ≥ η0, we
have ζ(〈xi,yi〉 , 〈xj,yj〉) = True. Then the sub-
sequences xisub and xjsub are mixed as Figure 1(b).
The mixed sub-sequence and labels will replace the
original parts of the parent samples, and the other
parts of the parent samples remain unchanged. In
this way, sub-sequence mixup is expected to keep
the syntax structure of the original sequence, while
providing data diversity.

Label-constrained sub-sequence mixup can
be considered as a special case of sub-sequence
mixup, where the constraints inherit sub-sequence
mixup, and further require that the sub-sequence
labels are consistent. As Figure 1(c) shows, after
mixing such paired samples, the generation will
just update the tokens of the sub-sequences while
keeping the labels the same as before. Hence, this
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(b) Sub-sequence mixup
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(c) Label-constrained sub-sequence
mixup

Figure 1: Illustration of the three variants of SeqMix. We use s = 5, η0 = 3
5 for whole-sequence mixup and

s = 3, η0 = 2
3 for sub-sequence mixup and label-constrained sub-sequence mixup. The solid red frames indicate

paired sequences or sub-sequences, and the red dotted frames indicate generated sequence or sub-sequence. In the
original sequences, the parts not included in the solid red frames will be unchanged in the generated sequences.
For the mixup in the embedding space, we take the embedding in E which is closest to the raw mixed embedding
as the generated embedding. For the mixup in the label space, the mixed label can be used as the pseudo label.

version is called label-constrained sub-sequence
mixup.

Comparing the three variants, label-constrained
sub-sequence mixup gives the most restrictions
to pairing parent samples, sub-sequence mixup
sets the sub-sequence-level pattern, while whole-
sequence mixup just requires η ≥ η0 for the se-
quences with the same length.

3.3 Scoring and Selecting Plausible
Sequences

During sequence mixup, the mixing coefficient λ
determines the strength of interpolation. When λ
approximates 0 or 1, the generated sequence will
be similar to one of the parent sequences, while the
λ around 0.5 produces relatively diverse generation.
However, generating diverse sequences means low-
quality sequences can be generated, which can pro-
vide noisy contextual information and hurt model
performance.

To maintain the quality of mixed sequences, we
set a discriminator to score the perplexity of the
sequences. The final generated sequences will con-
sist of only the sequences that pass the sequence
quality screening. For the screening, we utilize a
language model GPT-2 (Radford et al., 2019) to
score sequence x by computing its perplexity:

Perplexity(x) = 2−
1
T

∑T
i=1 log p(wi), (9)

where T is the number of tokens before padding,
wi is the i-th token of sequence x. Based on the per-
plexity and a score range [s1, s2], the discriminator

can give judgment for sequence x:

d(x) = 1 {s1 ≤ Perplexity (x) ≤ s2} . (10)

The lower the perplexity score, the more natural
the sequence. However, the discriminator should
also consider the regularization effectiveness and
the generation capacity. Hence, a blind low per-
plexity setting is undesirable. The overall sequence
mixup and selection procedure is illustrated in Al-
gorithm 2.

4 Experiments

4.1 Experiment Setup
Datasets. We conduct experiments on three se-
quence labeling datasets for the named entity recog-
nition (NER) and event detection tasks.
(1) CoNLL-03 (Tjong Kim Sang and De Meulder,
2003) is a corpus for NER task. It provides four
named entity types: persons, locations, organiza-
tions, and miscellaneous.2

(2) ACE05 is a corpus for event detection. It pro-
vides 8 event types and 33 subtypes. We study
the event trigger detection problem, which aims to
identify trigger tokens in a sentence.
(3) Webpage (Ratinov and Roth, 2009) is a NER
corpus with 20 webpages related to computer sci-
ence conference and academic websites. It inherits
the entity types from CoNLL-03.
Data Split. To investigate low-resource sequence
labeling, we randomly take 700 labeled sentences

2We take the English version as our target corpus.



from the original CoNLL-03 dataset as the training
set. For ACE05 and WebPage dataset, the annota-
tion is sparse, so we conduct experiments on their
original dataset without further slicing.

We set 6 data usage percentiles for the training
set in each corpus. The sequence model is initialed
on a small seed set, then it performs five iterates of
active learning. For the query policy, we use ran-
dom sampling and the three active learning policies
mentioned in Section 2.2. The machine learning
performance is evaluated by F1 score for each data
usage percentile.
Parameters. We use BERT-base-cased for the
NER task as the underlying model, and BERT-base-
multilingual-cased for the event trigger detection
task. We set the max length as 128 to pad the
varying-length sequences. The learning rate of the
underlying model is 5e-5, and the batch size is
32. We train them for 10 epochs at each data us-
age percentile. For the parameters of SeqMix, we
set α = 8 to sample λ from Beta(α, α). We use
the sub-sequence window length s = {5, 5, 4}, the
valid label density η0 = {0.6, 0.2, 0.5} for CoNLL-
03, ACE05 and Webpage, respectively. The aug-
ment rate is set as 0.2, and the discriminator score
range is set as (0, 500). We also perform a detailed
parameter study in Section 4.4.

4.2 Results

The main results are presented in Figure 2, where
we use NTE sampling as the default active learning
policy. From the result, it is clear that our method
achieves the best performance consistently at each
data usage percentile for all three datasets. The
best SeqMix method (sub-sequence mixup with
NTE sampling) outperforms the strongest active
learning baselines by 2.95% on CoNLL-03, 2.27%
on ACE05 and 3.75% on WebPage in terms of F1

score on average. Moreover, the augmentation ad-
vantage is especially prominent for the seed set ini-
tialization stage where we only have a very limited
number of labeled data. Through the augmentation,
we improve the model performance from 68.65%
to 80.71%, where the seed set is 200 labeled se-
quences and the augmentation provides extra 40
data points for CoNLL-03. The improvement is
also significant on ACE05 (40.65% to 49.51%),
and WebPage (55.18% to 71.67%), which indi-
cates that our SeqMix can largely resolve the label
scarcity issue in low-resource scenarios.

We also perform statistical significance tests for

Data Usage 200 300 400 500 600 700
(0, +∞) 81.15 82.32 82.74 83.66 83.79 85.05
(0, 2000) 80.20 82.24 83.21 83.67 83.90 85.11
(0, 1000) 80.13 81.86 83.58 84.22 84.81 85.16
(0, 500) 80.71 82.82 84.05 85.28 86.04 86.24

Table 1: The F1(%) of sub-sequence mixup with NTE
sampling in different discriminator score range, evalu-
ated on CoNLL-03 with 700 data.

the above results. We use Wilcoxon Signed Rank
Test (Wilcoxon, 1992), a non-parametric alterna-
tive to the paired t-test. This significance test fits
our task as F-score is generally assumed to be not
normally distributed (Dror et al., 2018), and non-
parametric significance tests should be used in such
a case. The results show that sub-sequence mixup
and label-constrained sub-sequence mixup can pro-
vide a statistical significance (the confidence level
α = 0.05 and the number of data points N = 6)
for all the comparisons with active learning base-
lines on used datasets. The whole-sequence mixup
passes the statistical significance test with α = 0.1
and N = 6 on CoNLL-03 and WebPage, but fails
on ACE05.

Among all the three SeqMix variants, sub-
sequence mixup gives the overall best performance
(label-constrained sub-sequence mixup achieves
very close performance with sub-sequence mixup
on ACE05 dataset), but whole-sequence mixup
does not yield a consistent improvement to the orig-
inal active learning method. This is because the
whole-sequence mixup may generate semantically
poor new sequences. Instead, the sub-sequence-
level process reserves the original context informa-
tion between the sub-sequence and the other parts
of the whole sequence. Meanwhile, the updated
sub-sequences inherit the original local informa-
tiveness, and introduce linguistic diversity to en-
hance the model’s generalization ability.

To justify that SeqMix can provide improvement
to the active learning framework with various query
policies, we employ different query policies with
SeqMix augmentation under the same experiment
setting as Figure 2(a). From Figure 3, we find
that there is a consistent performance improvement
when employing SeqMix with different query poli-
cies. As SeqMix achieves {2.46%, 2.85%, 2.94%}
performance gain for random sampling, LC sam-
pling and NTE sampling respectively.

4.3 Effect of Discriminator

To verify the effectiveness of the discriminator, we
conduct the ablation study on a subset of CoNLL-
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Figure 2: The F1 score of test set in terms of data usage on CoNLL-03, ACE05 and WebPage.

Data Usage 200 300 400 500 600 700 Average
r = 0.2 80.22 (+0.76) 82.23(+0.43) 83.61 (+0.61) 84.62 (+0.53) 85.16 (+0.10) 85.22 (-0.11) + 0.39
r = 0.4 79.71 (+0.25) 82.48(+0.68) 82.66 (-0.34) 83.46 (-0.63) 84.79 (-0.27) 85.24 (-0.09) - 0.07
r = 0.6 79.40 (-0.06) 82.07(+0.27) 83.34 (+0.34) 84.75 (+0.66) 85.43 (+0.37) 85.50 (+0.17) + 0.29
r = 0.8 79.48 (+0.02) 81.63(-0.17) 82.80 (-0.20) 83.29 (-0.80) 84.54 (-0.52) 85.32 (-0.01) - 0.28
r = 1.0 78.51 (-0.95) 80.58(-1.22) 82.59 (-0.41) 84.31 (+0.22) 85.36 (+0.30) 85.37 (+0.04) - 0.34

Table 2: The F1 score with variant augment rate r. The value in the parentheses is the difference with the average
F1 for corresponding data usage. The last column presents the average F1 difference for each learning rate r.
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Figure 3: The improvements to various active learning
approaches provided by SeqMix.

03 with 700 labeled sequences. We use sub-
sequence mixup with NTE sampling as the back-
bone and change the perplexity score range of the
discriminator. We start from the seed set with 200
labeled data, then actively query 100 data in each
learning round and repeat 5 rounds in total.

The result in Table 1 demonstrates the discrim-
inator provides a stable improvement for the last
four data usage percentiles, and the discriminator
with score range (0, 500) can boost the model by
1.07% F1 score, averaged by all the data usage per-
centiles. The comparison between 3 different score
thresholds demonstrates the lower the perplexity,
the better the generation quality. As a result, the
final F1 score becomes higher with the better gener-
ated tokens. Actually, we can further narrow down
the score range to get more performance improve-
ment in return, but the too strict constraints will
slow down the generation in practice and reduce
the number of generated samples.
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Figure 4: Parameter Search for SeqMix

4.4 Parameter Study
In this subsection, we study the effect of several
key parameters.

Augment rate r. We vary the augment rate r =
|L∗|

|ψ(U ,K,γ(·))| in {0.2, 0.4, 0.6, 0.8, 1.0} and keep
the number of initial data usage same to investi-
gate the effect of augment rate for data augmen-
tation. Table 2 shows that r ≤ 0.6 can provide
better F1 improvement. The model with r = 0.2
surpasses the model with r = 1.0 by 0.73%, evalu-
ated by the average F1 score for all the data usage
percentiles. This result indicates that the model ap-
preciates moderate augmentation more. However,
the performance variance based on the augment
rate is not prominent compared to the improvement
provided by SeqMix to the active learning frame-
work.

Valid tag density η0. We search the valid tag
density η0 as Section 3.2 defined by varying the
sub-sequence window length s and the required
number of valid tag n within the window. The



results in Figure 4(a) illustrate the combination
(s = 5, n = 3) outperforms other settings. When
s is too small, the window usually truncates the
continuous clause, thus cutting off the local syn-
tax or semantic information. When s is too large,
sub-sequence mixup tends to behave like whole-
sequence mixup, where the too long sub-sequence
generation can hardly maintain the rationality of
syntax and semantics as before. The high η0 with
long window length may result in an insufficient
amount of eligible parent sequences. Actually, even
with a moderate augment rate α = 0.2, the combi-
nation (s = 6, n = 5) has been unable to provide
enough generation.

Mixing parameter α. We show the performance
with different α in Figure 4(b). The parameter α
decides the distribution λ ∼ Beta(α, α), and the
coefficient λ directly involved the mixing of tokens
and labels. Among the values {0.5, 1, 2, 4, 8, 16},
we observed α = 8 presents the best performance.
It outperforms the second-best parameter setting
0.49% by average. From the perspective of Beta
distribution, larger αwill make the sampled λmore
concentrated around 0.5, which assigns more bal-
ance weights to the parent samples to be mixed. In
this way, the interpolation produces encoded token
with further distance to both the parent samples,
thus introduces a more diverse generation.

4.5 Case Study

Figure 5 presents a generation example via sub-
sequence mixup. For the convenience of pre-
sentation, we set the length of sub-sequence
s = 3 and the valid label density threshold
η0 = 2

3 . The two input sequences get paired for
their eligible sub-sequences “COLORADO 10 St”
and “Slovenia , Kwasniewski”. The sub-
sequences are mixed by λ = 0.39 in this case,
which is sampled from Beta(α, α). Then the gen-
erated sub-sequence “Ohio ( novelist” re-
places the original parts in the two input sequences.
Among the generated tokens, “Ohio” inherits the
label B-ORG from “COLORADO” and the label
B-LOC from “Slovenia”, and the distribution
Beta(α, α) assigns the two labels with weights
λ = 0.39 and (1 − λ) = 0.61. The open paren-
thesis is produced by the mixing of a digit and a
punctuation mark, and keeps the label O shared
by its parents. Similarly, the token “novelist”
generated by “St” and “Kwasniewski” gets a
mixed label from B-ORG and B-PER.

The discriminator then evaluates the two gener-
ated sequences. The generated sequence i is not
reasonable enough intuitively, and its perplexity
score 877 exceeds the threshold, so it is not added
into the training set. The generated sequence j
retains the original syntax and semantic structure
much better. Although the open parenthesis seems
strange, it plays a role as the comma in the original
sequence to separate two clauses. This generation
behaves closely to a normal sequence and earns 332
perplexity score, which permits its incorporation
into the training set.

5 Related Work

Active Sequence Labeling Sequence labeling
has been studied extensively for different NLP
problems. Different neural architectures has been
proposed (Huang et al., 2015; Lample et al., 2016;
Peters et al., 2018; Akbik et al., 2018) in recent
years, which have achieved state-of-the-art per-
formance in a number of sequence labeling tasks.
However, these neural models usually require ex-
haustive human efforts for generating labels for
each token, and may not perform well in low-
resource settings. To improve the performance of
low-resource sequence labeling, several approaches
have been applied including using semi-supervised
methods (Clark et al., 2018; Chen et al., 2020b), ex-
ternal weak supervision (Lison et al., 2020; Liang
et al., 2020; Ren et al., 2020; Zhang et al., 2019; Yu
et al., 2020) and active learning (Shen et al., 2017;
Hazra et al., 2019; Liu et al., 2018; Fang et al.,
2017; Gao et al., 2019). In this study, we mainly
focus on active learning approaches which select
samples based on the query policy design. So far,
various uncertainty-based (Scheffer et al., 2001;
Culotta and McCallum, 2005; Kim et al., 2006)
and committee-based approaches (Dagan and En-
gelson, 1995) have been proposed for improving
the sample efficiency. More recently, Shen et al.
(2017); Hazra et al. (2019); Liu et al. (2018); Fang
et al. (2017) further improve the aforementioned ac-
tive learning approaches to improve the sampling
diversity as well as the generalization ability of
models on low-resource scenarios. These works
mainly claim the sample efficiency provided by
the active learning approach but do not study data
augmentation for active sequence labeling.

Interpolation-based Regularizations Mixup
implements interpolation in the input space to
regularize models (Zhang et al., 2018). Recently,
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Figure 5: A generation case of sub-sequence mixup.

the Mixup variants (Verma et al., 2019; Summers
and Dinneen, 2019; Guo et al., 2019b) turn to per-
form interpolation in the hidden space to capture
higher-level information. Guo et al. (2019a); Chen
et al. (2020a) apply hidden-space Mixup for text
classification. These works, however, have not
explored how to perform mixup for sequences with
token-level labels, nor do they consider the quality
of the mixed-up samples.

Text Augmentation Our work is also related to
text data augmentation. Zhang et al. (2015); Wei
and Zou (2019) utilize heuristic approaches in-
cluding synonym replancement, random insertion,
swap and deletion for text augmentation, Kafle et al.
(2017); Silfverberg et al. (2017) employ heuristic
rules based on specific task, Hu et al. (2017) pro-
pose to augment text data in an encoder-decoder
manner. Very recently, (Anaby-Tavor et al., 2020;
Kobayashi, 2018) harness the power of pre-trained
language models and augmenting the text data
based on contextual patterns. Although these meth-
ods can augment the training set and improve the
performance of text classification model, they fail
to generate sequences and labels simultaneously,
thus cannot be adapted to our problem where token-
level labels are required during training. Instead, in
our study, we propose a new framework SeqMix for
data augmentation to facilitate sequence labeling
task. Our method can generate token-level labels
and preserve the semantic information in the aug-
mented sentences. Moreover, it can be naturally
combined with existing active learning approaches
and further promote the performance.

6 Conclusion

We propose a simple data augmentation method
SeqMix to enhance active sequence labeling. By
performing sequence mixup in the latent space, Se-
qMix improves data diversity during active learn-
ing, while being able to generate plausible aug-
mented sequences. This method is generic to differ-
ent active learning policies and various sequence
labeling tasks. Our experiments demonstrate that
SeqMix can improve active learning baselines con-
sistently for NER and event detection tasks; and
its benefits are especially prominent in low-data
regimes. For future research, it is interesting to
enhance SeqMix with language models during the
mixup process, and harness external knowledge for
further improving diversity and plausibility.
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A Information for Dataset

A.1 Dataset Collection

Here we list the link to datasets used in our experi-
ments.

• CoNLL-03: https://github.com/
synalp/NER/tree/master/corpus/
CoNLL-2003.

• ACE05: We are unable to provide the down-
loadable version due to it is not public. This
corpus can be applied through the website of
LDC: https://www.ldc.upenn.edu/
collaborations/past-projects/
ace.

• Webpage: Please refer the link in the paper
(Ratinov and Roth, 2009).

A.2 Dataset Split

All the mentioned dataset has been split into
train/validate/test set in the released version. We
keep consistent with the validation set and the
test set in our experiment. For the active learn-
ing paradigm, we split the training set as Table 3.
The active learners are initialized on the seed set,
then they implement 5 active learning rounds.

B Baseline Settings

For the baselines, we take random sampling and
3 active learning approaches – LC sampling, NTE
sampling, and QBC sampling as Section 2.2.

C Implementation Details of SeqMix

We implement bert-base-cased as the underlying
model for the NER task and bert-base-multilingual-
cased as the underlying model for the event detec-
tion task. We use the model from Huggingface
Transformer codebase3, and the repository4 to fine-
tune our model for sequence labeling task.

C.1 Number of Parameters

In our model, we use bert-base-cased and bert-
base-multilingual-cased both of them occupy 12-
layer, 768-hidden, 12-heads with 110M parame-
ters.

3https://github.com/huggingface/
transformers

4https://github.com/kamalkraj/BERT-NER

C.2 Adapting BERT for sequence labeling
task

To fine-tune on sequence labeling tasks, a dropout
layer (p = 0.1) and a linear (token-level) classifi-
cation layer is built upon the pre-trained model.

C.3 SeqMix Details

In Section 3.2, we construct a table of tokensW
and their corresponding contextual embedding E .
For our underlying BERT model, we use the vocab-
ulary provided by the tokenizer to build upW , and
the embedding initialized on the training set as E .

We also need to construct a special token collec-
tion to exclude some generation in the process of
sequence mixing. For example, BERT places token
[CLS] and [SEP] at the starting position and the
ending position for sentence, and pad the inputs
with [PAD]. We exclude these disturbing tokens
and the parent tokens.

C.4 Parameter Settings

The key parameters setting in our framework are
stated here: (1) The number of active learning
round is 5 for all the three datasets, but the size
of seed set and the number of samples in each
round differs from the dataset. We list the specific
numbers as Table 3. (2) The sub-sequence window
length s and the valid label density threshold η0
vary from the datasets. For CoNLL-03, s = 5,
η0 = 0.6; for ACE05, s = 5, η0 = 0.2; for Web-
Page, s = 4, η0 = 0.5. (3) We set α = 8 for
the Beta distribution. (4) The discriminator score
range is set as (0, 500) for all the datasets. (5) For
BERT configuration, we choose 5e-5 for learning
rate, 128 for padding length, 32 for batch size, 0.1
for dropout rate, 1e-8 for ε in Adam. At each data
usage point, we train the model for 10 Epochs. (6)
We set C = 3 for the QBC query policy.

D Details of Experiments

We take following criteria to evaluate the sequence
labeling task. A named entity is correct only if it
is an exact match of the corresponding entity in
the data file. An event trigger is correct only if the
span and type match with golden labels. Based
on the above metric, we evaluate F1 score in our
experiments.

D.1 Performance on Development Set

Table 4 to Table 6 shows the model performance
on the validation set. The data usage in these tables

https://github.com/synalp/NER/tree/master/corpus/CoNLL-2003
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https://github.com/kamalkraj/BERT-NER


Dataset # of Entity Types # of Seed Set Sampling Rounds # of Each Round Samples # of Dev # of Test

CoNLL-03 4 200 5 100 3250 3453
ACE05 29 1k 5 {1k, 2k, 2k, 4k, 4k} 873 711

Webpage 4 85 5 60 99 135

Table 3: The information for benchmarks in our experiments.

Data Usage 200 300 400 500 600 700
Random Sampling 69.03 83.28 84.93 85.50 85.79 86.62

LC Sampling 69.03 83.78 84.55 85.88 86.04 86.73
NTE Sampling 69.03 83.60 85.00 85.47 86.19 86.83
QBC Sampling 69.03 83.33 84.52 85.30 86.27 86.60

Sub-sequence mixup 81.69 85.28 85.95 86.52 87.07 87.44

Table 4: Validation F1 of CoNLL-03

Data Usage 1000 2000 4000 6000 10000 14000
Random Sampling 48.16 59.10 63.13 64.95 66.23 67.12

LC Sampling 48.16 59.33 63.22 65.04 66.24 66.92
NTE Sampling 48.16 59.72 63.17 65.53 66.78 67.24
QBC Sampling 48.16 59.01 62.79 64.89 66.20 66.91

Sub-sequence mixup 56.51 61.62 63.65 65.83 67.54 67.98

Table 5: Validation F1 of ACE05

refers to the number of labeled data, excluding
the augmentation data. Sub-sequence mixup is
trained with (1+α) times data, where the α denotes
the augment rate. Note that WebPage is a very
limited dataset, there is a big difference between
the performance on the validation set and the test
set. We average each experiment by 5 times.

D.2 Computing Infrastructure
We implement our system on Ubuntu 18.04.3 LTS
system. We run our experiments on an Intel(R)
Xeon(R) CPU @ 2.30GHz and NVIDIA Tesla
P100-PCIe with 16 GB HBM2 memory. The
NVIDIA-SMI version is 418.67 and the CUDA
version is 10.1.

D.3 Average Runtime
For the 5-round active learning with SeqMix aug-
mentation, our program runs about 500 seconds
for WebPage dataset, 1700 seconds for the CoNLL
slicing dataset, and 3.5 hours for ACE 2005. If
the QBC query policy used, all the runtime will be
multiplied about 3 times.

D.4 Hyper parameter Search
For the discriminator score range, we first exam-
ine the perplexity score distribution of the CoNLL
training set. Then determine an approximate score
range (0, 2000) first. We linearly split score ranges
below 2000 to conduct parameter study and report

Data Usage 85 145 205 265 325 385
Random Sampling 0 27.52 34.41 34.83 37.93 35.73

LC Sampling 0 28.84 32.88 34.22 38.78 38.11
NTE Sampling 0 22.44 34.81 33.74 36.59 38.27
QBC Sampling 0 23.88 32.18 34.17 36.56 35.66

Sub-sequence mixup 14.35 33.74 34.70 36.22 39.74 38.25

Table 6: Validation F1 of WebPage

the representative ranges in Section 4.3. Given
the consideration to the generation speed and the
augment rate setting, we finally choose 500 as the
upper limit rather than a too narrow score range
setting.

For the mixing coefficient λ, we follow (Zhang
et al., 2018) to sample it from Beta(α, α) and ex-
plore α ranging from [0.5, 16]. We present this
parameter study in Section 4.4. The result shows
different α did not influence the augmentation per-
formance much.

For the augment rate and the valid tag density,
we also have introduced the parameter study in
Section 4.4.


